二次函數(shù)f(x)=x2+2ax+2a+1.
(1)若對任意x∈R有f(x)≥1恒成立,求實數(shù)a的取值范圍;
(2)討論函數(shù)f(x)在區(qū)間[0,1]上的單調(diào)性;
(3)若對任意的x1,x2∈[0,1]有|f(x1)-f(x2)|≤1恒成立,求實數(shù)a的取值范圍.

解:(1)f(x)≥1?x2+2ax+2a≥0對任意x∈R恒成立,
∴△=4a2-8a≤0,解得0≤a≤2,
∴a的范圍是[0,2];
(2)f(x)=(x+a)2-a2+2a+1,其圖象是開口向上的拋物線,對稱軸方程為x=-a,
討論:①當(dāng)-a≤0即a≥0時,f(x)在區(qū)間[0,1]上單調(diào)遞增;
②當(dāng)0<-a<1即-1<a<0時,f(x)在區(qū)間[0,-a]上單調(diào)遞減,在區(qū)間[-a,1]上單調(diào)遞增;
③當(dāng)-a≥1即a≤-1時,f(x)在區(qū)間[0,1]上單調(diào)遞減.
(3)由題意知,|f(x1)-f(x2)|≤1恒成立等價于f(x)max-f(x)min≤1,
f(0)=2a+1,f(1)=4a+2,f(-a)=-a2+2a+1,
由(2),
解得-1≤a≤0.
分析:(1)f(x)≥1?x2+2ax+2a≥0對任意x∈R恒成立,據(jù)二次函數(shù)性質(zhì)有△≤0,解出即可;
(2)f(x)=(x+a)2-a2+2a+1,其圖象是開口向上的拋物線,對稱軸方程為x=-a,按對稱軸x=-a與區(qū)間[0,1]的位置關(guān)鍵分三種情況討論即可;
(3)|f(x1)-f(x2)|≤1恒成立等價于f(x)max-f(x)min≤1,由(2)分情況求得其最大值、最小值即可得一不等式,解出即得a的范圍.
點評:本題考查二次函數(shù)的性質(zhì)及函數(shù)恒成立問題,考查分類討論思想,對于函數(shù)恒成立問題,往往轉(zhuǎn)化為函數(shù)最值問題加以解決,屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c(a,b,c為實數(shù)a不為零),且同時滿足下列條件:
(1)f(-1)=0;
(2)對于任意的實數(shù)x,都有f(x)-x≥0;
(3)當(dāng)x∈(0,2)時有f(x)≤(
x+12
)2

①求f(1);
②求a,b,c的值;
③當(dāng)x∈[-1,1]時,函數(shù)g(x)=f(x)-mx(m∈R)是單調(diào)函數(shù),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c(a∈N*),若不等式f(x)<2x的解集為(1,4),且方程f(x)=x有兩個相等的實數(shù)根.
(1)求f(x)的解析式;
(2)若不等式f(x)>mx在x∈(1,+∞)上恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)二次函數(shù)f(x)=ax2+bx+c的圖象過點(0,1)和(1,4),且對于任意的實數(shù)x,不等式f(x)≥4x恒成立.
(1)求函數(shù)f(x)的表達式;
(2)設(shè)g(x)=kx+1,若F(x)=log2[g(x)-f(x)]在區(qū)間[1,2]上是增函數(shù),求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx(a、b為常數(shù)且a≠0)滿足條件:f(-x+5)=f(x-3),且方程f(x)=x有等根.
(1)求f(x)的解析式;
(2)函數(shù)f(x)在(x∈[t,t+1],t∈R)的最大值為u(t),求u(t)解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省杭州高級中學(xué)高一(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)二次函數(shù)f(x)=ax2+bx+c的圖象過點(0,1)和(1,4),且對于任意的實數(shù)x,不等式f(x)≥4x恒成立.
(1)求函數(shù)f(x)的表達式;
(2)設(shè)g(x)=kx+1,若F(x)=log2[g(x)-f(x)]在區(qū)間[1,2]上是增函數(shù),求實數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案