(理)對(duì)數(shù)列{an}和{bn},若對(duì)任意正整數(shù)n,恒有bn≤an,則稱數(shù)列{bn}是數(shù)列{an}的“下界數(shù)列”.

(1)設(shè)數(shù)列an=2n+1,請(qǐng)寫出一個(gè)公比不為1的等比數(shù)列{bn},使數(shù)列{bn}是數(shù)列{an}的“下界數(shù)列”;

(2)設(shè)數(shù)列,求證數(shù)列{bn}是數(shù)列{an}的“下界數(shù)列”;

(3)設(shè)數(shù)列,構(gòu)造,,求使對(duì)恒成立的k的最小值.

答案:
解析:

  (理)

  (1)等,答案不唯一  4分

  (2),當(dāng)時(shí)最小值為9  6分

  ,則,

  因此,時(shí),最大值為6  9分

  所以,,數(shù)列是數(shù)列的“下界數(shù)列”  10分

  (3)

    11分

    12分

  不等式為,,  13分

  設(shè),則  15分

  當(dāng)時(shí),單調(diào)遞增,時(shí),取得最小值,因此  17分

  的最小值為  18分


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

8、對(duì)數(shù)列{an},規(guī)定{△an}為數(shù)列{an}的一階差分?jǐn)?shù)列,其中△an=an+1-an(n∈N).對(duì)自然數(shù)k,規(guī)定{△kan}為{an}的k階差分?jǐn)?shù)列,其中△kan=△k-1an+1-△k-1an=△(△k-1an).
(1)已知數(shù)列{an}的通項(xiàng)公式an=n2+n(n∈N),,試判斷{△an},{△2an}是否為等差或等比數(shù)列,為什么?
(2)若數(shù)列{an}首項(xiàng)a1=1,且滿足△2an-△an+1+an=-2n(n∈N),求數(shù)列{an}的通項(xiàng)公式.
(3)(理)對(duì)(2)中數(shù)列{an},是否存在等差數(shù)列{bn},使得b1Cn1+b2Cn2+…+bnCnn=an對(duì)一切自然n∈N都成立?若存在,求數(shù)列{bn}的通項(xiàng)公式;若不存在,則請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理)在數(shù)列{an}中,a1=6,且對(duì)任意大于1的正整數(shù)n,點(diǎn)(
an
an-1
)在直線x-y=
6
上,則數(shù)列{
a n
n3(n+1)
}的前n項(xiàng)和Sn=
6n
n+1
6n
n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年正定中學(xué)一模理)    (12分)        

     設(shè)數(shù)列{an}的各項(xiàng)都是正數(shù),且對(duì)任意nN+,都有,記Sn為數(shù)列{an}的前n項(xiàng)和.

  

   (1)求數(shù)列{an}的通項(xiàng)公式;

   (2)若為非零常數(shù),n∈N+),問(wèn)是否存在整數(shù),使得對(duì)任意 nN+,都有bn+1>bn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江西省吉安一中高三(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

對(duì)數(shù)列{an},規(guī)定{△an}為數(shù)列{an}的一階差分?jǐn)?shù)列,其中△an=an+1-an(n∈N).對(duì)自然數(shù)k,規(guī)定{△kan}為{an}的k階差分?jǐn)?shù)列,其中△kan=△k-1an+1-△k-1an=△(△k-1an).
(1)已知數(shù)列{an}的通項(xiàng)公式an=n2+n(n∈N),試判斷{△an},{△2an}是否為等差或等比數(shù)列,為什么?
(2)若數(shù)列{an}首項(xiàng)a1=1,且滿足△2an-△an+1+an=-2n(n∈N),求數(shù)列{an}的通項(xiàng)公式.
(3)(理)對(duì)(2)中數(shù)列{an},是否存在等差數(shù)列{bn},使得b1Cn1+b2Cn2+…+bnCnn=an對(duì)一切自然n∈N都成立?若存在,求數(shù)列{bn}的通項(xiàng)公式;若不存在,則請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010年上海市華東師大二附中高三數(shù)學(xué)綜合練習(xí)試卷(01)(解析版) 題型:解答題

對(duì)數(shù)列{an},規(guī)定{△an}為數(shù)列{an}的一階差分?jǐn)?shù)列,其中△an=an+1-an(n∈N).對(duì)自然數(shù)k,規(guī)定{△kan}為{an}的k階差分?jǐn)?shù)列,其中△kan=△k-1an+1-△k-1an=△(△k-1an).
(1)已知數(shù)列{an}的通項(xiàng)公式an=n2+n(n∈N),試判斷{△an},{△2an}是否為等差或等比數(shù)列,為什么?
(2)若數(shù)列{an}首項(xiàng)a1=1,且滿足△2an-△an+1+an=-2n(n∈N),求數(shù)列{an}的通項(xiàng)公式.
(3)(理)對(duì)(2)中數(shù)列{an},是否存在等差數(shù)列{bn},使得b1Cn1+b2Cn2+…+bnCnn=an對(duì)一切自然n∈N都成立?若存在,求數(shù)列{bn}的通項(xiàng)公式;若不存在,則請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案