(本小題滿分12分)
(理科)如圖,四邊形為矩形,四邊形為梯形,平面平面,
,.
(Ⅰ)若中點,求證:平面
(Ⅱ)求平面所成銳二面角的大小.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

若直線‖直線,且,則與平面的關系是(    )
A.
B.
C.
D.相交或

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分18分)第一題滿分5分,第二題滿分5分,第三題滿分8分.
如圖,有一公共邊但不共面的兩個三角形ABC和A1BC被一平面DEE1D1所截,若平面DEE1D1分別交AB,AC,A1B,A1C于點D,E,D1,E1。
(1)討論這三條交線ED,CB, E1 D1的關系。
(2)當BC//平面DEE1D1時,求的值;

(3)當BC不平行平面DEE1D1時, 的值變化嗎?為什么?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

,則有(     )
A.                         B.
C.、異面                    D.A、B、C選項都不正確

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知長方體底面為正方形,為線段的中點,為線段的中點.                               
(Ⅰ)求證:∥平面;
(Ⅱ)設的中點,當的比值為多少時,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題共l2分)
如圖,在直三棱柱ABCA1B1C1中,∠BAC=90°,AB=AC=AA1=1,延長A1C1至點P,使C1PA1C1,連接AP交棱CC1D
(Ⅰ)求證:PB1∥平面BDA1;
(Ⅱ)求二面角AA1DB的平面角的余弦值;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

.如圖,在底面是直角梯形的四棱錐    P—ABCD中,AD//BC, ∠ABC=90°,PA⊥平面ABCD,PA=4.
AD=2,AB=,BC=6.

(Ⅰ)求證:BD⊥平面PAC;
(Ⅱ)求二面角A—PC—D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
(1)如圖,對于任一給定的四面體,找出依
次排列的四個相互平行的平面 ,使
(i=1,2,3,4),且其中每相鄰兩個平面間
的距離都相等;
(2)給定依次排列的四個相互平行的平面,其中每相鄰兩個平面間的距離為1,若一個正四面體的四個頂點滿足:(i=1,2,3,4),求該正四面體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分14分)本題共有2個小題,第1小題滿分6分,第2小題滿分8分
已知正四棱錐的所有棱長都是,底面正方形兩條對角線相交于點,點是側棱的中點
(1)求此正四棱錐的體積.
(2)求異面直線所成角的值.(用反三角函數(shù)表示)

查看答案和解析>>

同步練習冊答案