三棱錐被平行于底面ABC的平面所截得的幾何體如圖所示,截面為A1B1C1,,A1A⊥平面
ABC,,,AC=2,,
(Ⅰ)證明:平面A1AD⊥平面BCC1B1;
(Ⅱ)求AA1與平面BCC1B1所成角的正弦值。
解:(Ⅰ)如圖,建立空間直角坐標(biāo)系,
,
∵BD:DC=1:2,
,
∴D點(diǎn)的坐標(biāo)為,
,
,
,,
,,
,
∴BC⊥平面
平面,
∴平面平面
(Ⅱ)設(shè)平面的法向量為,則,
,
,得,
,
因此,AA1與平面BCC1B1所成角的正弦值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)三棱錐被平行于底面ABC的平面所截得的幾何體如圖所示,截面為A1B1C1,∠BAC=90°,A1A⊥平面ABC,A1A=
3
,AB=
2
,AC=2,A1C1=1,
BD
DC
=
1
2

(Ⅰ)證明:平面A1AD⊥平面BCC1B1;
(Ⅱ)求二面角A-CC1-B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三棱錐被平行于底面ABC的平面所截得的幾何體如圖所示,截面為A1B1C1,

∠BAC=90°,A1A⊥平面ABC,A1A=,AB=,AC=2,A1C1=1,=.

(1)證明:平面A1AD⊥平面BCC1B1

(2)求二面角A—CC1—B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:陜西 題型:解答題

三棱錐被平行于底面ABC的平面所截得的幾何體如圖所示,截面為A1B1C1,∠BAC=90°,A1A⊥平面ABC,A1A=
3
,AB=
2
,AC=2,A1C1=1,
BD
DC
=
1
2

(Ⅰ)證明:平面A1AD⊥平面BCC1B1;
(Ⅱ)求二面角A-CC1-B的大。
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年新人教A版高考數(shù)學(xué)一輪復(fù)習(xí)單元質(zhì)量評估07(第七章)(理科)(解析版) 題型:解答題

三棱錐被平行于底面ABC的平面所截得的幾何體如圖所示,截面為A1B1C1,∠BAC=90°,A1A⊥平面ABC,,,AC=2,A1C1=1,
(Ⅰ)證明:平面A1AD⊥平面BCC1B1;
(Ⅱ)求二面角A-CC1-B的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008年陜西省高考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

三棱錐被平行于底面ABC的平面所截得的幾何體如圖所示,截面為A1B1C1,∠BAC=90°,A1A⊥平面ABC,,,AC=2,A1C1=1,
(Ⅰ)證明:平面A1AD⊥平面BCC1B1;
(Ⅱ)求二面角A-CC1-B的大。

查看答案和解析>>

同步練習(xí)冊答案