已知向量
a
=(1,2),
b
=(-3,2),若(k
a
+
b
)∥(
a
-3
b
),則實(shí)數(shù)k的取值為
-
1
3
-
1
3
分析:首先要表示出向量,再代入向量平行的坐標(biāo)形式的充要條件,得到關(guān)于字母系數(shù)的方程,解方程即可.
解答:解:∵
a
=(1,2),
b
=(-3,2),
∵k
a
+
b
=k(1,2)+(-3,2)=(k-3,2k+2),
a
-3
b
=(10,-4)
∵(k
a
+
b
)∥(
a
-3
b
),
∴-4(k-3)+10(2k+2)=0,
∴k=-
1
3
,
故答案為:-
1
3
點(diǎn)評:此題是個基礎(chǔ)題.考查平面向量共線的坐標(biāo)表示,同時考查學(xué)生的計算能力,要注意與向量垂直的坐標(biāo)表示的區(qū)別
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,已知向量
a
=(-1,2),又點(diǎn)A(8,0),B(n,t),C(ksinθ,t)(0≤θ≤
π
2
)

(1)若
AB
a
,且|
AB
|=
5
|
OA
|(O
為坐標(biāo)原點(diǎn)),求向量
OB
;
(2)若向量
AC
與向量
a
共線,當(dāng)k>4,且tsinθ取最大值4時,求
OA
OC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,2),
b
=(2,x)如果
a
b
所成的角為銳角,則x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,2),
b
=(x,-2)且
a
b
,則實(shí)數(shù)x等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①函數(shù)y=tan(3x-
π
2
)
的最小正周期是
π
3

②角α終邊上一點(diǎn)P(-3a,4a),且a≠0,那么cosα=-
3
5

③函數(shù)y=cos(2x-
π
3
)
的圖象的一個對稱中心是(-
π
12
,0)

④已知向量
a
=(1,2),
b
=(1,0),
c
=(3,4).若λ為實(shí)數(shù),且(
a
b
)∥
c
,則λ=2
⑤設(shè)f(x)是定義在R上的奇函數(shù),當(dāng)x≤0時,f(x)=2x2-x,則f(1)=-3
其中正確的個數(shù)有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,2),
b
=(x,4),若|
b
|=2|
a
|,則x的值為
±2
±2

查看答案和解析>>

同步練習(xí)冊答案