根據指令(r,θ)(r≥0,-180°<θ≤180°),機器人在平面上能完成下列動作:先原地旋轉角度θ(θ為正時,按逆時針方向旋轉θ,θ為負時,按順時針方向旋轉-θ),再朝其面對的方向沿直線行走距離r.
(Ⅰ)現(xiàn)機器人在直角坐標系的坐標原點,且面對x軸正方向,試給機器人下一個指令,使其移動到點(4,4).
(Ⅱ)機器人在完成該指令后,發(fā)現(xiàn)在點(17,0)處有一小球正向坐標原點作勻速直線滾動,已知小球滾動的速度為機器人直線行走速度的2倍,若忽略機器人原地旋轉所需的時間,問機器人最快可在何處截住小球?并給出機器人截住小球所需的指令(結果精確到小數(shù)點后兩位).

【答案】分析:(I)由題意,,θ=45°,根據機器人的轉動規(guī)則進行解答,即可得到結論;
(II)根據小球速度是機器人速度的2倍,建立方程,即可求得結論.
解答:解:(I)由題意,,θ=45°,
得指令為,…(4分)
(II)設機器人最快在點P(x,0)處截住小球…(6分)
則因為小球速度是機器人速度的2倍,所以在相同時間內有,…(8分)
即3x2+2x-161=0

∵要求機器人最快地去截住小球,即小球滾動距離最短,
∴x=7
故機器人最快可在點P(7,0)處截住小球,…(10分)
所給的指令為(5,-98.13°)…(14分)
點評:本題考查利用數(shù)學知識解決實際問題,考查學生的計算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2000•上海)根據指令(r,θ)(r≥0,-180°<θ≤180°),機器人在平面上能完成下列動作:先原地旋轉角度θ(θ為正時,按逆時針方向旋轉θ,θ為負時,按順時針方向旋轉-θ),再朝其面對的方向沿直線行走距離r.
(Ⅰ)現(xiàn)機器人在直角坐標系的坐標原點,且面對x軸正方向,試給機器人下一個指令,使其移動到點(4,4).
(Ⅱ)機器人在完成該指令后,發(fā)現(xiàn)在點(17,0)處有一小球正向坐標原點作勻速直線滾動,已知小球滾動的速度為機器人直線行走速度的2倍,若忽略機器人原地旋轉所需的時間,問機器人最快可在何處截住小球?并給出機器人截住小球所需的指令(結果精確到小數(shù)點后兩位).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

20.根據指令(r,θ)(r≥0,-180°<θ≤180°),機器人在平面上能完成下列動作:先原地旋轉角度θθ為正時,按逆時針方向旋轉θ.θ為負時,按順時針方向旋轉-θ).再朝其面對的方向沿直線行走距離r.

(1)現(xiàn)機器人在直角坐標系的坐標原點,且面對x軸正方向.試給機器人下一個指令,使其移動到

點(4,4).

(2)機器人在完成該指令后,發(fā)現(xiàn)在點(17,0)處有一小球正向坐標原點作勻速直線滾動.已知小球滾動的速度為機器人直線行走速度的2倍,若忽略機器人原地旋轉所需的時間,問機器人最快可在何處截住小球?并給出機器人截住小球所需的指令(結果精確到小數(shù)點后兩位).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

20.根據指令(r)(r≥0,-),機器人在平面上能完成下列動作:先原地旋轉角度為正時,按逆時針方向旋轉為負時,按順時針方向旋轉-).再朝其面對的方向沿直線行走距離r.

(1)現(xiàn)機器人在直角坐標系的坐標原點,且面對x軸正方向.試給機器人下一個指令,使其移動到

點(4,4).

(2)機器人在完成該指令后,發(fā)現(xiàn)在點(17,0)外有一小球正向坐標原點作勻速直線滾動.已知小球滾動的速度為機器人直線行走速度的2倍,若忽略機器人原地旋轉所需的時間,問機器人最快可在何處截住小球?并給出機器人截住小球所需的指令(結果精確到小數(shù)點后兩位).

查看答案和解析>>

科目:高中數(shù)學 來源:2000年上海市高考數(shù)學試卷(文科)(解析版) 題型:解答題

根據指令(r,θ)(r≥0,-180°<θ≤180°),機器人在平面上能完成下列動作:先原地旋轉角度θ(θ為正時,按逆時針方向旋轉θ,θ為負時,按順時針方向旋轉-θ),再朝其面對的方向沿直線行走距離r.
(Ⅰ)現(xiàn)機器人在直角坐標系的坐標原點,且面對x軸正方向,試給機器人下一個指令,使其移動到點(4,4).
(Ⅱ)機器人在完成該指令后,發(fā)現(xiàn)在點(17,0)處有一小球正向坐標原點作勻速直線滾動,已知小球滾動的速度為機器人直線行走速度的2倍,若忽略機器人原地旋轉所需的時間,問機器人最快可在何處截住小球?并給出機器人截住小球所需的指令(結果精確到小數(shù)點后兩位).

查看答案和解析>>

同步練習冊答案