【題目】如圖,在四棱柱中,側(cè)棱底面且點和分別為和的中點
(1)求證:平面
(2)求二面角的正弦值
(3)設(shè)為棱上的點,若直線和平面所成角的正弦值為,求線段的長
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2015·陜西)隨機抽取一個年份,對西安市該年4月份的天氣情況進行統(tǒng)計,結(jié)果如下:
日期 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
天氣 | 晴 | 雨 | 陰 | 陰 | 陰 | 雨 | 陰 | 晴 | 晴 | 晴 | 陰 | 晴 | 晴 | 晴 | 晴 |
日期 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
天氣 | 晴 | 陰 | 雨 | 陰 | 陰 | 晴 | 陰 | 晴 | 晴 | 晴 | 陰 | 晴 | 晴 | 晴 | 雨 |
(1)在4月份任取一天,估計西安市在該天不下雨的概率;
(2)西安市某學(xué)校擬從4月份的一個晴天開始舉行連續(xù)兩天的運動會,估計運動會期間不下雨的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層。某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元。該建筑物每年的能源消耗費用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關(guān)系:C(x)=若不建隔熱層,每年能源消耗費用為8萬元。設(shè)f(x)為隔熱層建造費用與20年的能源消耗費用之和。
(Ⅰ)求k的值及f(x)的表達式。
(Ⅱ)隔熱層修建多厚時,總費用f(x)達到最小,并求最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2015·北京)某校老年、中年和青年教師的人數(shù)見下表,采用分層抽樣的方法調(diào)查教師的身體狀況,在抽取的樣本
中,青年教師有320人,則該樣本的老年教師人數(shù)為( )
A.90
B.100
C.180
D.300
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2015·湖北)設(shè)函數(shù),的定義域均為,且是奇函數(shù),是偶函數(shù),,其中e為自然對數(shù)的底數(shù).
(Ⅰ)求,的解析式,并證明:當時,,;
(Ⅱ)設(shè),,證明:當時,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知m,n是兩條不同直線,,是兩個不同平面,則下列命題正確的是
A.若,垂直于同一平面,則與平行
B.若m,n平行于同一平面,則m與n平行
C.若,不平行,則在內(nèi)不存在與平行的直線
D.若m,n不平行,則m與n不可能垂直于同一平面
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2015·陜西)設(shè)fn(x)是等比數(shù)列1,x,x2...,xn的各項和,其中x>0,nN, ,n≥2,
(1)證明:函數(shù)Fn(x)=fn(x)-2在(,1)內(nèi)有且僅有一個零點(記為xn),且xn=+xnn+1;
(2)設(shè)有一個與上述等比數(shù)列的首項、末項、項數(shù)分別相同的等差數(shù)列,其各項和為gn(x),比較fn(x)與gn(x)的大小,并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( ) (1.)已知等比數(shù)列{an},則“數(shù)列{an}單調(diào)遞增”是“數(shù)列{an}的公比q>1”的充分不必要條件;
(2.)二項式 的展開式按一定次序排列,則無理項互不相鄰的概率是 ;
(3.)已知 ,則 ;
(4.)為了解1000名學(xué)生的學(xué)習(xí)情況,采用系統(tǒng)抽樣的方法,從中抽取容量為40的樣本,則分段的間隔為40.
A.(1)(2)
B.(2)(3)
C.(1)(3)
D.(2)(4)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com