已知A={x|x2≥4},B={x|
6-x1+x
≥0},C={x||x-3|<3}
,若U=R.   (1)求B∩C;   (2)求CU(A∪C).
分析:(1)先將A、B、C化簡,然后根據(jù)交集的定義求解B∩C.注意正確求解相應(yīng)的不等式,這是求解該題的關(guān)鍵.
(2)利用補集的定義,結(jié)合(1)問的求解,寫出相應(yīng)的集合,求出CU(A∪C)即可.
解答:解:由x2≥4,得x≥2,或x≤-2,
∴A={x|x≥2,或x≤-2}.
又由不等式
6-x
x+1
≥0
,得-1<x≤6,
∴B={x|-1<x≤6}.
又由|x-3|<3,得0<x<6,∴C={x|0<x<6}.
∴A={x|x≤-2或x≥2},B={-1<x≤6},C={x|0<x<6}-----(4分)
(1)B∩C={x|0<x<6}------------(8分)
(2)由于A∪C={x|x≤-2或x>0},
∴CU(A∪C)═{x|-2<x≤0}-------(12分)
點評:本題考查一元二次不等式,簡單的分式不等式,含絕對值的不等式的解法,考查集合交并運算的求解,考查學(xué)生數(shù)形結(jié)合思想的運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知A={x|x2+(P+2)x+4=0},M={x|x>0},若A∩M=∅,則實數(shù)P的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A={x|
x2-x-2x2+1
>0
},B={x|4x+p<0},且A?B,求實數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A={x|x2-2x-3<0},B={x|x<a},若A⊆B,則實數(shù)a的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A={x|x2≥4},B={x|
6-x1+x
≥0},C={x||x-3|<3}
,若U=R,
(1)求(CUB)∪(CUC),
(2)求A∩CU(B∩C).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A={x|x2+6x+8≤0},B={x|kx2+(2k-4)x+k-4>0,x∈R},若A∪B=B,求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案