已知集合A={x|-2<x≤5},B={x|m+1≤x≤2m-1}且A⊆B,求實數(shù)m的取值范圍.

解:集合A={x|-2<x≤5},B={x|m+1≤x≤2m-1},
由A⊆B得:,
解得:
集合A是集合B的子集,說明集合B不能為空集,所以2m-1≥m+1,解得m≥2
所以實數(shù)m的取值范圍∅.
分析:化簡后的基礎(chǔ)上,借助于子集概念得到兩集合端點值的關(guān)系,求解不等式得到m的范圍.
點評:本題考查了集合的包含關(guān)系判斷及應(yīng)用,考查了不等式的解法,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|
x-2ax-(a2+1)
<0},B={x|x<5a+7},若A∪B=B
,則實數(shù)a的值范圍是
[-1,6]
[-1,6]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x
log
1
2
(x+2)>-3
x2≤2x+15
,B={x|m+1≤x≤2m-1}

(I)求集合A;
(II)若B⊆A,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|0<x2-x≤2},B={x|x2-x+a(1-a)≤0}.
(1)求集合A;
(2)若B∪A=[-1,2],求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2+(a+2)x+1=0,x∈R},B={x|lg(x+1)>0},若A∩B=∅,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2+3x-18>0},B={x|x2-(k+1)x-2k2+2k≤0},若A∩B≠∅,求實數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案