若函數(shù)y=x2+bx+c(x∈(-∞,1))不是單調(diào)函數(shù),則實數(shù)b的取值范圍( 。
分析:由題意,只需二次函數(shù)y的對稱軸x=-
b
2
在區(qū)間(-∞,1)內(nèi)即可.
解答:解:∵函數(shù)y=x2+bx+c的圖象是拋物線,對稱軸是x=-
b
2
,
且當x∈(-∞,1)時,y不是單調(diào)函數(shù),
∴-
b
2
<1,
即b>-2,
∴b的取值范圍是{b|b>-2};
故選:A.
點評:本題考查了二次函數(shù)的圖象與性質(zhì)的應用問題,是基礎題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)設點P(m,n)在圓x2+y2=2上,l是過點P的圓的切線,切線l與函數(shù)y=x2+x+k(k∈R)的圖象交于A,B兩點,點O是坐標原點.
(1)當k=-2,m=-1,n=-1時,判斷△OAB的形狀;
(2)△OAB是以AB為底的等腰三角形;
①試求出P點縱坐標n滿足的等量關(guān)系;
②若將①中的等量關(guān)系右邊化為零,左邊關(guān)于n的代數(shù)式可表為(n+1)2(ax2+bx+c)的形式,且滿足條件的等腰三角形有3個,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列四個命題:
①函數(shù)f(x)=x|x|+bx+c為奇函數(shù)的充要條件是c=0;
②關(guān)于x的方程ax2-2ax-1=0有且僅有一個實數(shù)根,則實數(shù)a=-1;
③若函數(shù)f(x)=lg(x2+ax-a)的值域是R,則a≤-4或a≥0;
④若函數(shù)y=f(x-1)是偶函數(shù),則函數(shù)y=f(x)的圖象關(guān)于直線x=0對稱.
其中所有正確命題的序號是
①②③
①②③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出以下三個命題:
①函數(shù)f(x)=x|x|+bx+c為奇函數(shù)的充要條件是c=0;
②若函數(shù)f(x)=lg(x2+ax-a)的值域是R,則a≤-4或a≥0;
③若函數(shù)y=f(x-1)是偶函數(shù),則函數(shù)y=f(x)的圖象關(guān)于直線x=-1對稱.
其中正確的命題序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知半徑為1的⊙O1與x軸交于A,B兩點,OM為⊙O1的切線,切點為M,且M在第一象限,圓心O1的坐標為(2,0),二次函數(shù)y=-x2+bx+c的圖象經(jīng)過A,B兩點.
(1)求二次函數(shù)的解析式;
(2)求切線OM的函數(shù)解析式;
(3)線段OM上是否存在一點P,使得以P,O,A為頂點的三角形與△OO1M相似.若存在,請求出所有符合條件的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案