已知兩條不重合的直線m、n和兩個不重合的平面α、β,有下列命題:
①若m⊥n,m⊥α,則n∥α;
②若m⊥α,n⊥β,m∥n,則α∥β;
③若m、n是兩條異面直線,m?α,n?β,m∥β,n∥α,則α∥β;
④若α⊥β,α∩β=m,n?β,n⊥m,則n⊥α.
其中正確命題的個數(shù)是( )
A.1
B.2
C.3
D.4
【答案】分析:①直線與平面的位置關系有三種:平行,相交,在平面內(nèi),此命題中n可能在平面α內(nèi),故①錯誤;②利用“垂直于同一條直線的兩平面平行即可判斷②正確;③利用線面垂直的判定定理,先證明平面β內(nèi)有兩條相交直線與平面α平行,再由面面平行的判定定理證明兩面平行,③正確;④若兩平面垂直,則在一個平面內(nèi)垂直于交線的直線垂直于另一個平面,由此性質定理即可判斷④正確
解答:解:①若m⊥n,m⊥α,則n可能在平面α內(nèi),故①錯誤
②∵m⊥α,m∥n,∴n⊥α,又∵n⊥β,∴α∥β,故②正確
③過直線m作平面γ交平面β與直線c,
∵m、n是兩條異面直線,∴設n∩c=O,
∵m∥β,m?γ,γ∩β=c∴m∥c,
∵m?α,c?α,∴c∥α,
∵n?β,c?β,n∩c=O,c∥α,n∥α
∴α∥β;故③正確
④由面面垂直的性質定理:∵α⊥β,α∩β=m,n?β,n⊥m,∴n⊥α.故④正確
故正確命題有三個,
故選C
點評:本題綜合考查了直線與平面的位置關系,面面平行的判定定理及結論,面面垂直的性質定理等基礎知識