直線與橢圓相切,則t=   
【答案】分析:由直線與橢圓C:相切轉(zhuǎn)化為只有一組解,即2x2-10tx+25(t2-1)=0只有一個(gè)解,從而有△=0,求解即可.
解答:解:直線與橢圓C:相切
只有一組解
即2x2-10tx+25t2-25=0只有一個(gè)根
△=100t2-200(t2-1)=0
解可得 t=
故答案為:
點(diǎn)評(píng):本題主要考查了直線與橢圓相切的位置關(guān)系,處理的方法是把直線與橢圓方程聯(lián)立,轉(zhuǎn)化為方程只有一個(gè)解來(lái)求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線l:
x
5
+
y
4
=t
與橢圓C:
x2
25
+
y2
16
=1
相切,則t=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點(diǎn),A是橢圓短軸上的一個(gè)頂點(diǎn),橢圓的離心率為
1
2
,點(diǎn)B在x軸上,AB⊥AF,A、B、F三點(diǎn)確定的圓C恰好與直線x+
3
y+3=0
相切.
(1)求橢圓的方程;
(2)設(shè)O為橢圓的中心,過(guò)F點(diǎn)作直線交橢圓于M、N兩點(diǎn),在橢圓上是否存在點(diǎn)T,使得
OM
+
ON
+
OT
=
0
,如果存在,則求點(diǎn)T的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

直線數(shù)學(xué)公式與橢圓數(shù)學(xué)公式相切,則t=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年湖北省部分重點(diǎn)中學(xué)高三(上)起點(diǎn)數(shù)學(xué)試卷(理科)(鐘祥一中命題)(解析版) 題型:解答題

已知F是橢圓的左焦點(diǎn),A是橢圓短軸上的一個(gè)頂點(diǎn),橢圓的離心率為,點(diǎn)B在x軸上,AB⊥AF,A、B、F三點(diǎn)確定的圓C恰好與直線相切.
(1)求橢圓的方程;
(2)設(shè)O為橢圓的中心,過(guò)F點(diǎn)作直線交橢圓于M、N兩點(diǎn),在橢圓上是否存在點(diǎn)T,使得,如果存在,則求點(diǎn)T的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案