函數(shù)f(x)=x2-4x-4在閉區(qū)間[t,t+1](t∈R)上的最小值記為g(t).
(1)試寫(xiě)出g(t)的函數(shù)表達(dá)式;
(2)作g(t)的圖象并寫(xiě)出g(t)的最小值.
思路 本題只須討論f(x)=x2-4x-4的對(duì)稱(chēng)軸與閉區(qū)間[t,t+1]的位置即可寫(xiě)出g(t). 解答 (Ⅰ)f(x)=x2-4x-4=(x-2)2-8. 當(dāng)t>2時(shí),f(x)在[t,t+1]上是增函數(shù), ∴g(t)=f(t)=t2-4t-4; 當(dāng)t≤2≤t+1,即t<1時(shí),1≤t≤2時(shí),g(t)=f(2)=-8; 當(dāng)t+1<2,即t<1時(shí),f(x)在[t,t+1]上是減函數(shù), ∴g(t)=f(t+1)=t2-2t-7. 從而g(t)= ∴g(t)的最小值為-8. g(t)的圖象如下圖所示 評(píng)析 (1)含有參數(shù)的二次函數(shù)的最值問(wèn)題,因其頂點(diǎn)對(duì)于定義域區(qū)間的位置不同,其最值狀況也不同.所以要根據(jù)二者的相關(guān)位置進(jìn)行分類(lèi)討論. (2)本題是“定”二次函數(shù),“動(dòng)”區(qū)間,依照此法也可以討論“動(dòng)”二次函數(shù),“定”區(qū)間的二次函數(shù)問(wèn)題. |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)函數(shù)f(x)=x2-2-1(-3≤x≤3).
(1)證明:f(x)是偶函數(shù);
(2)指出函數(shù)f(x)的單調(diào)區(qū)間,并說(shuō)明在各個(gè)單調(diào)區(qū)間上f(x)是增函數(shù)還是減函數(shù);
(3)求函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù)f(x)自變量取值區(qū)間A,若其值域區(qū)間也為A,則稱(chēng)區(qū)間A為f(x)的保值區(qū)間.
(1)求函數(shù)f(x)=x2形如[n,+∞)(n∈R)的保值區(qū)間;
(2)g(x)=x-ln(x+m)的保值區(qū)間是[2,+∞),求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年上海交大附中高三數(shù)學(xué)理總復(fù)習(xí)二函數(shù)的圖像與性質(zhì)練習(xí)卷(解析版) 題型:填空題
若函數(shù)f(x)=x2-|x+a|為偶函數(shù),則實(shí)數(shù)a=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年黑龍江高三上期末考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題
對(duì)實(shí)數(shù)a和b,定義運(yùn)算“?”:a?b=,設(shè)函數(shù)f(x)=(x2-2)?(x-x2),x∈R,若函數(shù)y=f(x)-c的圖象與x軸恰有兩個(gè)公共點(diǎn),則實(shí)數(shù)c的取值范圍是
A.(-∞,-2]∪ B.
C. D.(-∞,-2]∪
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com