15.已知f(x)=x(x-1)(x-2)…(x-100),在x=0處的導(dǎo)數(shù)值為( 。
A.0B.1002C.200D.100×99×…×2×1

分析 利用導(dǎo)數(shù)的運(yùn)算法則即可得出.

解答 解:設(shè)g(x)=(x-1)(x-2)…(x-100),
∴f(x)=xg(x),
∴f′(x)=g(x)+xg′(x),
∴f′(0)=g(0)+0×g′(0)=g(0)=(-1)×(-2)×)×…×(-100)=100×99×…×2×1,
故選:D

點(diǎn)評(píng) 本題主要考查導(dǎo)數(shù)的基本運(yùn)算,利用積的導(dǎo)數(shù)公式是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知實(shí)數(shù)x>0,y>0,且滿足x+y=1,則$\frac{2}{x}$+$\frac{x}{y}$的最小值為2+2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.若實(shí)數(shù)a>b>1,且logab+logba=$\frac{5}{2}$,則logab=$\frac{1}{2}$;$\frac{a}{^{2}}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,已知四棱錐P-ABCD,地面ABCD為菱形,PA⊥平面ABCD,∠ABC=60°,E是BC的中點(diǎn).
(I)證明:AE⊥PD;
(II)若AB=2,AP=2,在線段PC上是否存在點(diǎn)F使二面角E-AF-C的余弦值為$\frac{\sqrt{15}}{5}$?若存在,請(qǐng)確定點(diǎn)F的位置,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.$\int_{0}^{π}{({cosx+1})}dx$等于(  )
A.1B.0C.πD.π+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知直線l1:2x-2y+1=0,直線l2:x+by-3=0,若l1⊥l2,則b=1;若l1∥l2,則兩直線間的距離為$\frac{7\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知f(x)=5x5+4x4+3x3+2x2+x+1,若用秦九韶算法求f(5)的值,下面說(shuō)法正確的是( 。
A.至多4乘法運(yùn)算和5次加法運(yùn)算B.15次乘法運(yùn)算和5次加法運(yùn)算
C.10次乘法運(yùn)算和5次加法運(yùn)算D.至多5次乘法運(yùn)算和5次加法運(yùn)算

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.如圖,在正四棱柱ABCD-A1B1C1D1中,底面ABCD的邊長(zhǎng)為7,BD1與底面所成角的大小為$arctan\frac{6}{7}$,則該正四棱柱的高等于$6\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.關(guān)于x的不等式x2-2ax-3a2<0(a>0)的解集為(x1,x2),且|x1-x2|=8,則a=2.

查看答案和解析>>

同步練習(xí)冊(cè)答案