如圖,在三棱錐S-ABC中,△ABC是邊長為4的正三角形,平面SAC⊥平面ABC,SA=SC=,M為AB的中點(diǎn).

(1)證明AC⊥SB.

(2)求平面SCM的一個法向量.

答案:
解析:


提示:

判定異面直線的垂直,可以用常規(guī)法也可以用向量法,但求平面的法向量,必然要用向量的坐標(biāo)運(yùn)算.而本題給出的幾何體不是特殊的幾何體,不容易直接建立空間直角坐標(biāo)系,因此充分挖掘題目條件,建立坐標(biāo)系是本題關(guān)鍵.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在三棱錐S-ABC中,SA⊥平面ABC,平面SAB⊥平面SBC.
(1)求證:AB⊥BC;
(2)若設(shè)二面角S-BC-A為45°,SA=BC,求二面角A-SC-B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱錐S-ABC中,G1,G2分別是△SAB和△SAC的重心,則直線G1G2與BC的位置關(guān)系是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱錐S-ABC中,平面SBC⊥平面ABC,SB=SC=AB=2,BC=2
2
,∠BAC=90°,O為BC中點(diǎn).
(Ⅰ)求點(diǎn)B到平面SAC的距離;
(Ⅱ)求二面角A-SC-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•杭州模擬)如圖,在三棱錐S-ABC中,SA=SC=AB=BC,則直線SB與AC所成角的大小是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•成都一模)如圖,在三棱錐S-ABC中,SA丄平面ABC,SA=3,AC=2,AB丄BC,點(diǎn)P是SC的中點(diǎn),則異面直線SA與PB所成角的正弦值為(  )

查看答案和解析>>

同步練習(xí)冊答案