給出下列命題:
①y=tanx在其定義域上是增函數(shù);
②函數(shù)的最小正周期是;
;q:f(x)=logtanαx在(0,+∞)內(nèi)是增函數(shù),則p是q的充分非必要條件;
④函數(shù)的奇偶性不能確定.
其中正確命題的序號是    (把你認為的正確命題的序號都填上)
【答案】分析:根據(jù)正切函數(shù)的單調(diào)性,可判斷①的真假,根據(jù)正弦型函數(shù)的圖象和性質(zhì)及函數(shù)圖象的對折變換法則,可判斷②的真假;根據(jù)正切函數(shù)的圖象和性質(zhì),對數(shù)函數(shù)的單調(diào)性,及充要條件的定義,可判斷③的真假;根據(jù)函數(shù)奇偶性的定義,及對數(shù)的運算性質(zhì),可判斷④的真假.
解答:解:y=tanx的圖象是不連續(xù)的,在每一個(-+kπ,+kπ)(k∈Z)上均為增函數(shù),但在定義域上不具單調(diào)性,故①錯誤;
函數(shù)的最小正周期是π,對折變換后,周期變?yōu)樵瓉淼囊话,函?shù)的最小正周期是,故②正確;
若f(x)=logtanαx在(0,+∞)內(nèi)是增函數(shù),則tanα>1,,k∈Z,故③正確;
函數(shù)的定義域為R,且f(-x)==,此時f(x)+f(-x)=0,則函數(shù)為奇函數(shù),故④錯誤
故答案為:②③
點評:本題以命題的真假判斷為載體,考查了函數(shù)的單調(diào)性,奇偶性,周期性及函數(shù)圖象的對折變換,是函數(shù)與簡單邏輯的綜合應(yīng)用,難度不大.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

給出下列命題:①y=lg(sinx+
1+sin2x
)
是奇函數(shù);
②若α,β是第一象限角,且α>β,則cosα<cosβ;
③函數(shù)f(x)=2x-x2在R上有3個零點;
④函數(shù)y=sin2x的圖象向左平移
π
4
個單位,得到函數(shù)y=sin(2x+
π
4
)
的圖象.
其中正確命題的序號是
 
.(把正確命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列命題
①函數(shù)y=tan(3x-
π
2
)
的周期是
π
3
;
②角α終邊上一點P(-3a,4a),且a≠0,那么cosα=-
3
5
;
③函數(shù)y=cos(2x-
π
3
)
的圖象的一個對稱中心是(-
π
12
,0)
;
④已知f(x)=sin(ωx+2)滿足f(x+2)+f(x)=0,則ω=
π
2

其中正確的個數(shù)有( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列命題:
y=
x2+3
x2+2
的最小值為2;       
②若a>b,則
1
a
1
b
成立的充要條件是ab>0;
③若不等式x2+ax-4<0對任意x∈(-1,1)恒成立,則實數(shù)a的取值范圍為(-3,3).
真命題的序號是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列命題:
①y=tanx在其定義域上是增函數(shù);
②函數(shù)y=|sin(2x+
π
3
)|
的最小正周期是
π
2

p:
π
4
<α<
π
2
;q:f(x)=logtanαx在(0,+∞)內(nèi)是增函數(shù),則p是q的充分非必要條件;
④函數(shù)y=lg(sinx+
sin2x+1
)
的奇偶性不能確定.
其中正確命題的序號是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列命題:
①y=x2是冪函數(shù);
②函數(shù)f(x)=2x-x2的零點有2個;
③(x+
1
x
+2)5展開式的項數(shù)是6項;
④函數(shù)y=sinx(x∈[-π,π])圖象與x軸圍成的圖形的面積是S=
π
sinxdx;
⑤若ξ~N(1,σ2),且P(0≤ξ≤1)=0.3,則P(ξ≥2)=0.2.
其中真命題的序號是
①⑤
①⑤
(寫出所有正確命題的編號).

查看答案和解析>>

同步練習冊答案