若如果△ABC的頂點坐標(biāo)分別是A(4,6)、B(-2,1)、C(4,-1),則重心的坐標(biāo)是(    )

A.(2,1)   B.(2,2)C.(1,2)   D.(2,4)

答案:B

解析:x==2,y==2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的兩個頂點B,C的坐標(biāo)分別為(-1,0)和(1,0),頂點A為動點,如果△ABC的周長為6.
(Ⅰ)求動點A的軌跡M的方程;
(Ⅱ)過點P(2,0)作直線l,與軌跡M交于點Q,若直線l與圓x2+y2=2相切,求線段PQ的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:022

給出下列四個命題:

方程x2+xy+x=0的曲線是一條直線;

已知A(0),B(1,0)ACB=90°,則在直角坐標(biāo)平面內(nèi)ABC的頂點C的軌跡方程是x2+y2=1

如果曲線C上的點的坐標(biāo)滿足方程.F(x,y)=0,則點集;

若曲線C1,的方程是f1(x,y)=0,曲線C2的方程是f2(x,y)=0,點P(x0,y0)C1C2的交點,則方程f1(x,y)+λf2(xy)=0(λ為任意常實數(shù))的曲線經(jīng)過點P(x0,y0)



其中正確命題的序號是________(把你認(rèn)為正確的命題序號都填上)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知△ABC的兩個頂點B,C的坐標(biāo)分別為(-1,0)和(1,0),頂點A為動點,如果△ABC的周長為6.
(Ⅰ)求動點A的軌跡M的方程;
(Ⅱ)過點P(2,0)作直線l,與軌跡M交于點Q,若直線l與圓x2+y2=2相切,求線段PQ的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年陜西省西安市戶縣惠安中學(xué)高考沖刺數(shù)學(xué)試卷(三)(解析版) 題型:解答題

已知△ABC的兩個頂點B,C的坐標(biāo)分別為(-1,0)和(1,0),頂點A為動點,如果△ABC的周長為6.
(Ⅰ)求動點A的軌跡M的方程;
(Ⅱ)過點P(2,0)作直線l,與軌跡M交于點Q,若直線l與圓x2+y2=2相切,求線段PQ的長.

查看答案和解析>>

同步練習(xí)冊答案