(x-
1
x
)6
的二項(xiàng)式展開式中,常數(shù)項(xiàng)等于______.
展開式的通項(xiàng)為Tr+1=
Cr6
x6-r(-
1
x
r=(-1)r
Cr6
x6-2r
令6-2r=0可得r=3
常數(shù)項(xiàng)為(-1)3
C36
=-20
故答案為:-20
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列四種說法:①命題“?α∈R,sin3α=sin2α”的否定是假命題;②在△ABC中,角A,B,C所對的邊分別為a,b,c,若a=1,b=
2
,A=
π
6
B=
π
4
;③設(shè)二次函數(shù)f(x)=x2+ax+a,則“0<a<3-2
2
”是“方程f(x)-x=0的兩根x1和x2滿足0<x1<x2<1”的充分必要條件.④過點(diǎn)(
1
2
,1)且與函數(shù)y=
1
x
的圖象相切的直線方程是4x+y-3=0.其中所有正確說法的序號是
①④
①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•崇明縣二模)在(x+
1
x
)6
的展開式中,常數(shù)項(xiàng)等于
15
15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

附加題:(選做題:在下面A、B、C、D四個(gè)小題中只能選做兩題)
A.選修4-1:幾何證明選講
如圖,已知AB、CD是圓O的兩條弦,且AB是線段CD的垂直平分線,
已知AB=6,CD=2
5
,求線段AC的長度.
B.選修4-2:矩陣與變換
已知二階矩陣A有特征值λ1=1及對應(yīng)的一個(gè)特征向量e1=
1
1
和特征值λ2=2及對應(yīng)的一個(gè)特征向量e2=
1
0
,試求矩陣A.
C.選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系xOy中,已知曲線C的參數(shù)方程是
y=sinθ+1
x=cosθ
(θ是參數(shù)),若以O(shè)為極點(diǎn),x軸的正半軸為極軸,取與直角坐標(biāo)系中相同的單位長度,建立極坐標(biāo)系,求曲線C的極坐標(biāo)方程.
D.選修4-5:不等式選講
已知關(guān)于x的不等式|ax-1|+|ax-a|≥1(a>0).
(1)當(dāng)a=1時(shí),求此不等式的解集;
(2)若此不等式的解集為R,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•臨沂二模)下面四個(gè)命題:
①函數(shù)y=
1
x
在(2,
1
2
)處的切線與直線2x-y+1=0垂直;
②已知a=
π
0
(sint+cost)dt,則(x-
1
ax
6展開式中的常數(shù)項(xiàng)為-
5
2

③在邊長為1的正方形ABCD內(nèi)(包括邊界)有一點(diǎn)M,則△AMB的面積大于或等于
1
4
的概率為
3
4

④在一個(gè)2×2列聯(lián)表中,由計(jì)算得K2=13,079,則其兩個(gè)變量有關(guān)系的可能性是99.9%.
P(K2≥k0 0.15 0.10 0.05 0.025 0.01 0.005 0.001
k0 2.072 2.706 3.841 5.024 6.635 7.879 10.828
其中所有正確的命題序號是
②④
②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

下列四種說法:①命題“?α∈R,sin3α=sin2α”的否定是假命題;②在△ABC中,角A,B,C所對的邊分別為a,b,c,若a=1,b=
2
A=
π
6
B=
π
4
;③設(shè)二次函數(shù)f(x)=x2+ax+a,則“0<a<3-2
2
”是“方程f(x)-x=0的兩根x1和x2滿足0<x1<x2<1”的充分必要條件.④過點(diǎn)(
1
2
,1)且與函數(shù)y=
1
x
的圖象相切的直線方程是4x+y-3=0.其中所有正確說法的序號是______.

查看答案和解析>>

同步練習(xí)冊答案