已知函數(shù)y=x2+(1-k)x-k的一個零點在(2,3)內(nèi),試求實數(shù)k的范圍.

解:由題意及零點的存在性定理,得
∴f(2)•f(3)<0,
∴(6-3k)(12-4k)<0,
解得2<k<3.
答案為(2,3).
分析:題中條件:“一個零點在(2,3)內(nèi)”依據(jù)零點存在性定理有f(2)•f(3)<0,從而解得實數(shù)k的范圍.
點評:本題主要考查知識點是根的存在性及根的個數(shù)判斷、函數(shù)的應用,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

15、已知函數(shù)y=x2+2x-3,分別求它在下列區(qū)間上的值域.
(1)x∈R;
(2)x∈[0,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

16、已知函數(shù)y=-x2+4x-2,若x∈(3,5),求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

16、已知函數(shù)y=-x2+4x-2
(1)若x∈[0,5],求該函數(shù)的單調(diào)增區(qū)間;
(2)若x∈[0,3],求該函數(shù)的最大值.最小值;
(3)若x∈(3,5),求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=x2-2x+9分別求下列條件下的值域
(1)定義域是{x|3<x≤8};
(2)定義域是{x|-3<x≤2}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=x2-x-4的定義域為[m,n],值域為[-
17
4
,-4]
,則m+n的取值范圍為( 。

查看答案和解析>>

同步練習冊答案