|
|
如圖1,四邊形ABCD為矩形,PD⊥平面ABCD,AB=1,BC=PC=2,作如圖2折疊,折痕EF∥DC,其中點(diǎn)E,F(xiàn)分別在線段PD,PC上,沿EF折疊后點(diǎn)P疊在線段AD上的點(diǎn)記為M,并且MF⊥CF.
(1)證明:CF⊥平面MDF;
(2)求三棱錐M-CDE的體積.
|
|
|
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
如圖,四凌錐p-ABCD中,底面ABCD為矩形,PA上面ABCD,E為PD的點(diǎn).
(Ⅰ)證明:PP∥平面AEC;
(Ⅱ)設(shè)置AP=1,AD=,三凌P-ABD的體積V=,求A到平面PBC的距離.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
已知二面角α-l-β為60°,ABα,AB⊥l,A為垂足,CDβ,C∈l,∠ACD=135°,則異面直線AB與CD所成角的余弦值為
|
[ ] |
A. |
|
B. |
|
C. |
|
D. |
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
為了了解1000名學(xué)生的學(xué)習(xí)情況,采用系統(tǒng)抽樣的方法,從中抽取容量為40的樣本,則分段的間隔為
|
[ ] |
A. |
50
|
B. |
40
|
C. |
25
|
D. |
20
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
等比數(shù)列{an}的各項(xiàng)均為正數(shù)且a1a5=4,則log2a1+log2a2+log2a3+log2a4+log2a5=________.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
已知復(fù)數(shù)z滿足(3+4i)z=25,則z=
|
[ ] |
A. |
3-4i
|
B. |
3+4i
|
C. |
-3-4i
|
D. |
-3+4i
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
不等式|x-1|+|x+2|≥5的解集為_(kāi)_______.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
命題“x∈[0,+∞)x3+x≥0”的否定是
|
[ ] |
A. |
x∈(0,∞)x3+x<0
|
B. |
x∈(-∞,0)x3+x≥0
|
C. |
x0∈[0,+∞)x+x0≤0
|
D. |
x0∈[0,+∞)x+x0≥0
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
若集合A={0,1,2,4},B={1,2,3},則A∩B=
|
[ ] |
A. |
{0,1,2,3,4}
|
B. |
{0,4}
|
C. |
{1,2}
|
D. |
{3}
|
|
|
查看答案和解析>>