設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,對(duì)任意的正整數(shù)n,都有an=5Sn+1成立.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=log4|an|,求數(shù)列{
1
bnbn+1
}前n項(xiàng)和Tn
考點(diǎn):數(shù)列的求和,數(shù)列遞推式
專題:等差數(shù)列與等比數(shù)列
分析:(Ⅰ)由已知條件推導(dǎo)出a1=-
1
4
,an+1-an=5an+1,推出數(shù)列是等比數(shù)列,求出an=(-
1
4
)n.
(Ⅱ)由bn=log4|(-
1
4
)n|=-n,得
1
bnbn+1
=
1
n
-
1
n+1
,由此利用錯(cuò)位相減法能求出數(shù)列{
1
bnbn+1
}前n項(xiàng)和Tn
解答: 解:(Ⅰ)當(dāng)n=1時(shí),a1=5S1+1,解得a1=-
1
4
.…(2分)
又∵an=5Sn+1,an+1=5Sn+1+1,
∴an+1-an=5an+1,…(4分)
an+1
an
=-
1
4
,∴數(shù)列{an}是首項(xiàng)為a1=-
1
4
,公比為q=-
1
4
的等比數(shù)列,
∴an=(-
1
4
n.…(6分)
(Ⅱ)解:bn=log4|(-
1
4
n|=-n,…(8分)
1
bnbn+1
=
1
n(n+1)
=
1
n
-
1
n+1
,…(10分)
∴Tn=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
+…+
1
n
-
1
n+1
=1-
1
n+1
=
n
n+1
.…(12分)
點(diǎn)評(píng):本題考查數(shù)列的通項(xiàng)公式的求法,考查數(shù)列的前n項(xiàng)和的求法,解題時(shí)要認(rèn)真審題,注意錯(cuò)位相減法的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

復(fù)數(shù)-
1+i
i
的共軛復(fù)數(shù)是( 。
A、1-iB、-1+i
C、1+iD、-1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

由正整點(diǎn)坐標(biāo)(橫坐標(biāo)和縱坐標(biāo)都是正整數(shù))表示的一組平面向量
ai
(i=1,2,3,…,n,…),按照一定的順序排成如圖所示的三角形向量序列圖表.規(guī)則是:對(duì)于?n∈N*,第n行共有2n-1個(gè)向量,若第n行第k個(gè)向量為
am
,則
am
=
(k,n)(0<k≤n)
(n,2n-k)(n<k≤2n-1)
,例如
a1
=(1,1),
a2
=(1,2),
a3
=(2,2),
a4
=(2,1),…,依此類推,則
a2015
=( 。
A、(44,11)
B、(44,10)
C、(45,11)
D、(45,10)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a>0,b>0,a+b=1.
(1)證明:
1
a
+
1
b
+
1
ab
≥8;
(2)證明:(a+
1
a
2+(b+
1
b
2
25
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

點(diǎn)A(x0,y0)在雙曲線
x2
4
-
y2
32
=1的右支上,若點(diǎn)A到右焦點(diǎn)的距離等于2x0,則x0=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知M={(x,y)|0≤x≤2,-1≤y≤1},點(diǎn)P(x,y)∈M,使得x+y≤0的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知底面邊長(zhǎng)為2cm,側(cè)棱長(zhǎng)為2
3
cm的正四棱柱各頂點(diǎn)都在同一球面上,則該球的體積為( 。
A、
20
5
π
3
cm3
B、5
5
πcm3
C、
20
3
π
3
cm3
D、5
3
πcm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
m
=(2cosx,-cos(x+
π
12
)),
n
=(cosx,2sin(x+
π
12
)),記f(x)=
m
n

(Ⅰ)求函數(shù)f(x)的最小正周期和單調(diào)遞減區(qū)間;
(Ⅱ)在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若f(
A
2
)=1
,a=2,b=
3
,求sinC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=sin(2x-
π
3
)在區(qū)間[-
π
2
,π]的簡(jiǎn)圖是( 。
A、
B、
C、
D、

查看答案和解析>>

同步練習(xí)冊(cè)答案