【題目】在正方體中,分別為線段的中點,為四棱錐的外接球的球心,點分別是直線上的動點,記直線所成角為,則當(dāng)最小時,

A.B.C.D.

【答案】D

【解析】

如圖,設(shè)分別為棱的中點,則四棱錐的外接球即三棱柱的外接球,所以其外接球球心為上、下底面三角形外心連線的中點,是平面內(nèi)的一條動直線,所以的最小值是直線與平面所成角,即問題轉(zhuǎn)化為求直線與平面所成角的正切值,通過建立空間直角坐標(biāo)算出直線與平面所成角的正切值即可.

如圖,設(shè)分別為棱的中點,

則四棱錐的外接球即三棱柱的外接球,

因為三棱柱為直三棱柱,

所以其外接球球心為上、下底面三角形外心連線的中點.

由題意,是平面內(nèi)的一條動直線,所以的最小值是直線與平面所成角,即問題轉(zhuǎn)化為求直線與平面所成角的正切值.

不妨設(shè)正方體的棱長為2,則.

因為為等腰三角形,所以外接圓的直徑為,

,從而.

如圖,以為原點,以的方向為軸,軸,軸的正方向建立空間直角坐標(biāo)系

,,,

設(shè)平面的一個法向量為,

,令,則,

因為,所以,則.

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,動物園要圍成相同面積的長方形虎籠四間,一面可利用原有的墻,其它各面用鋼筋網(wǎng)圍成.

(1)現(xiàn)有可圍長網(wǎng)的材料,每間虎籠的長、寬各設(shè)計為多少時,可使每間虎籠面積最大?

(2)若使每間虎籠面積為,則每間虎籠的長、寬各設(shè)計為多少時,可使圍成四間虎籠的鋼筋網(wǎng)總長最?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)),.

(1)若的圖象在處的切線恰好也是圖象的切線.

①求實數(shù)的值;

②若方程在區(qū)間內(nèi)有唯一實數(shù)解,求實數(shù)的取值范圍.

(2)當(dāng)時,求證:對于區(qū)間上的任意兩個不相等的實數(shù), ,都有成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù),不等式的解集有且只有一個元素,設(shè)數(shù)列的前項和.

1)求數(shù)列的通項公式;

2)若數(shù)列滿足,求數(shù)列的前項和.

3)設(shè)各項均不為0的數(shù)列中,滿足的正整數(shù)的個數(shù)稱為這個數(shù)列的變號數(shù),令,求數(shù)列的變號數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】互聯(lián)網(wǎng)正在改變著人們的生活方式,在日常消費(fèi)中手機(jī)支付正逐漸取代現(xiàn)金支付成為人們首選的支付方式. 某學(xué)生在暑期社會活動中針對人們生活中的支付方式進(jìn)行了調(diào)查研究. 采用調(diào)查問卷的方式對100名18歲以上的成年人進(jìn)行了研究,發(fā)現(xiàn)共有60人以手機(jī)支付作為自己的首選支付方式,在這60人中,45歲以下的占,在仍以現(xiàn)金作為首選支付方式的人中,45歲及以上的有30人.

(1)從以現(xiàn)金作為首選支付方式的40人中,任意選取3人,求這3人至少有1人的年齡低于45歲的概率;

(2)某商家為了鼓勵人們使用手機(jī)支付,做出以下促銷活動:凡是用手機(jī)支付的消費(fèi)者,商品一律打八折. 已知某商品原價50元,以上述調(diào)查的支付方式的頻率作為消費(fèi)者購買該商品的支付方式的概率,設(shè)銷售每件商品的消費(fèi)者的支付方式都是相互獨(dú)立的,求銷售10件該商品的銷售額的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,點是圓上一動點,動點滿足,點在直線上,且.

1)求點的軌跡的標(biāo)準(zhǔn)方程;

2)已知點在直線上,過點作曲線的兩條切線,切點分別為,記點到直線的距離分別為,求的最大值,并求出此時點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】拋物線的焦點為F,過點F的直線交拋物線于A,B兩點.

1)若,求直線AB的斜率;

2)設(shè)點M在線段AB上運(yùn)動,原點O關(guān)于點M的對稱點為C,求四邊形OACB面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象在處的切線方程是.

1)求的值;

2)若函數(shù),討論的單調(diào)性與極值;

3)證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】 下列結(jié)論錯誤的是

A. 命題:“若,則”的逆否命題是“若,則

B. ”是“”的充分不必要條件

C. 命題:“, ”的否定是“,

D. 若“”為假命題,則均為假命題

查看答案和解析>>

同步練習(xí)冊答案