已知是定義在上的奇函數(shù),且,若,恒成立.

(1)判斷上是增函數(shù)還是減函數(shù),并證明你的結(jié)論;

(2)若對所有恒成立,求實(shí)數(shù)的取值范圍。

 

【答案】

(1)增函數(shù),證明詳見解析;(2)

【解析】

試題分析:(1)要判斷函數(shù)的單調(diào)性一般可用增函數(shù)和減函數(shù)的定義或利用導(dǎo)函數(shù)判斷,由于本題沒有函數(shù)解析式,再結(jié)合題目特點(diǎn),適于用定義判斷,解決問題的關(guān)鍵是對照增函數(shù)和減函數(shù)的定義,再結(jié)合奇函數(shù)的條件,怎樣通過適當(dāng)?shù)馁x值構(gòu)造出與相關(guān)的式子,再判斷符號解決,通過觀察,只要令即可;(2)不等式恒成立問題一般要轉(zhuǎn)化為函數(shù)的最值問題,先將原問題轉(zhuǎn)化為對任意成立,再構(gòu)造函數(shù),問題又轉(zhuǎn)化為任意恒成立,此時(shí)可對的系數(shù)的符號討論,但較為繁瑣,較為簡單的做法是只要滿足即可.

試題解析:(1)設(shè),則是奇函數(shù)

由題設(shè)知

時(shí)  ,

上是增函數(shù)

(2)由(1)知,上是增函數(shù),且 

,對所有恒成立,需且只需

成立,

,對任意恒成立  需且只需滿足

,

考點(diǎn):函數(shù)的單調(diào)性、不等式恒成立.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在[-1,1]上的奇函數(shù). 當(dāng)a,b∈[-1,1],且a+b≠0時(shí),有
f(a)+f(b)a+b
>0
成立.
(Ⅰ)判斷函f(x)的單調(diào)性,并證明;
(Ⅱ)若f(1)=1,且f(x)≤m2-2bm+1對所有x∈[-1,1],b∈[-1,1]恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在R上的不恒為零的函數(shù),且對于任意實(shí)數(shù)a,b都有f(a•b)=af(b)+bf(a),則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆云南省高一上學(xué)期期中數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分12分)已知函數(shù)是定義在上的奇函數(shù),且,

(1)確定函數(shù)的解析式;

(2)用定義證明上是增函數(shù);

(3)解不等式.

【解析】第一問利用函數(shù)的奇函數(shù)性質(zhì)可知f(0)=0

結(jié)合條件,解得函數(shù)解析式

第二問中,利用函數(shù)單調(diào)性的定義,作差變形,定號,證明。

第三問中,結(jié)合第二問中的單調(diào)性,可知要是原式有意義的利用變量大,則函數(shù)值大的關(guān)系得到結(jié)論。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省高三三月月考數(shù)學(xué)(理)試卷 題型:選擇題

已知函數(shù)是定義在R上的奇函數(shù),且,在[0,2]上是增函

數(shù),則下列結(jié)論:

(1)若,則;[來源:Z§xx§k.Com]

(2)若

(3)若方程在[-8,8]內(nèi)恰有四個不同的根,則;

其中正確的有(     )

A.0個              B.1個             C.2個               D.3個

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知是定義在上的不恒為零的函數(shù),且對于任意實(shí)數(shù)都有, 則

(A)是奇函數(shù),但不是偶函數(shù)         (B)是偶函數(shù),但不是奇函數(shù)

(C)既是奇函數(shù),又是偶函數(shù)         (D)既非奇函數(shù),又非偶函

查看答案和解析>>

同步練習(xí)冊答案