設(shè)數(shù)列{an}的通項公式為an=2n-7(n∈N*),則|a1|+|a2|+|a3|+…+|a10|=
 
分析:確定數(shù)列的正負項,即可求出絕對值的和.
解答:解:∵an=2n-7,∴n≤3時,an<0;n≥4時,an>0,
∴|a1|+|a2|+|a3|+…+|a10|=5+3+1+1+3+5+…+13=58,
故答案為:58.
點評:本題考查數(shù)列的通項與求和,考查學生分析解決問題的能力,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)數(shù)列{an}的通項是關(guān)于x的不等式x2-x<(2n-1)x(n∈N′)的解集中整數(shù)的個數(shù).
(1)求an并且證明{an}是等差數(shù)列;
(2)設(shè)m、k、p∈N*,m+p=2k,求證:
1
Sm
+
1
Sp
2
Sk

(3)對于(2)中的命題,對一般的各項均為正數(shù)的等差數(shù)列還成立嗎?如果成立,請證明你的結(jié)論,如果不成立,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)數(shù)列{an}的通項公式為 an=kn-1.已知a1+a2+a3=7,且a1+3,3a2,a3+4構(gòu)成等差數(shù)列.
(1)求k的值;
(2)令bn=log2a3n+1,(n=1,2,…,),求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)數(shù)列{an}的通項公式an=
1
n+1
+
1
n+2
+
1
n+3
+…+
1
2n
,那么an+1-an等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)數(shù)列{an}的通項an=n2+λn+1,已知對任意n∈N*,都有an+1>an,則實數(shù)λ的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)數(shù)列{an}的通項公式an=f(n)是一個函數(shù),則它的定義域是( 。

查看答案和解析>>

同步練習冊答案