【題目】選修4﹣4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)xOy中,圓C1:x2+y2=4,圓C2:(x﹣2)2+y2=4.
(1)在以O(shè)為極點,x軸正半軸為極軸的極坐標(biāo)系中,分別寫出圓C1 , C2的極坐標(biāo)方程,并求出圓C1 , C2的交點坐標(biāo)(用極坐標(biāo)表示);
(2)求圓C1與C2的公共弦的參數(shù)方程.

【答案】
(1)

解:由 ,x2+y22,

可知圓 ,的極坐標(biāo)方程為ρ=2,

,即 的極坐標(biāo)方程為ρ=4cosθ,

得:ρ=2, ,

故圓C1,C2的交點坐標(biāo)(2, ),(2, ).


(2)

解法一:由 得圓C1,C2的交點的直角坐標(biāo)(1, ),(1,- ).

故圓C1,C2的公共弦的參數(shù)方程為

(或圓C1,C2的公共弦的參數(shù)方程為

解法二:將x=1代入 得ρcosθ=1

從而

是圓C1,C2的公共弦的參數(shù)方程為


【解析】(1)利用 ,以及x2+y22 , 直接寫出圓C1 , C2的極坐標(biāo)方程,求出圓C1 , C2的交點極坐標(biāo),然后求出直角坐標(biāo)(用坐標(biāo)表示);(2)解法一:求出兩個圓的直角坐標(biāo),直接寫出圓C1與C2的公共弦的參數(shù)方程.
解法二:利用直角坐標(biāo)與極坐標(biāo)的關(guān)系求出 ,然后求出圓C1與C2的公共弦的參數(shù)方程.
【考點精析】本題主要考查了直線的參數(shù)方程的相關(guān)知識點,需要掌握經(jīng)過點,傾斜角為的直線的參數(shù)方程可表示為為參數(shù))才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形ABCD中,AB∥C,AD=DC=CB=1,∠ABC═60°,四邊形ACFE為矩形,平面ACFE⊥平面ABCD,CF=1.
(1)求證:BC⊥平面ACFE;
(2)求二面角A﹣BF﹣C的平面角的余弦值;
(3)若點M在線段EF上運動,設(shè)平MAB與平FCB所成二面角的平面角為θ(θ≤90°),試求cosθ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)奇函數(shù)上是增函數(shù),且,則不等式的解集為( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在5件產(chǎn)品中,有3件一等品和2件二等品,從中任取2件,以為概率的事件是(  )

A. 恰有1件一等品 B. 至少有一件一等品

C. 至多有一件一等品 D. 都不是一等品

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,AB⊥平面BCP,CD∥平面ABP,AB=BC=CP=BP=2CD=2
(1)證明:平面ABP⊥平面ADP;
(2)若直線PA與平面PCD所成角為α,求sinα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某百貨公司1~6月份的銷售量與利潤的統(tǒng)計數(shù)據(jù)如表:

月份

1

2

3

4

5

6

銷售量x/萬件

10

11

13

12

8

6

利潤y/萬元

22

25

29

26

16

12

(1)根據(jù)2~5月份的統(tǒng)計數(shù)據(jù),求出y關(guān)于x的回歸直線方程x+;

(2)若由回歸直線方程得到的估計數(shù)據(jù)與剩下的檢驗數(shù)據(jù)的誤差均不超過2萬元,則認(rèn)為得到的回歸直線方程是理想的,試問所得回歸直線方程是否理想?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人都準(zhǔn)備于下午12:00-13:00之間到某車站乘某路公交車外出,設(shè)在12:00-13:00之間有四班該路公交車開出,已知開車時間分別為12:20,12:30,12:40,13:00,分別求他們在下述情況下坐同一班車的概率.

(1)他們各自選擇乘坐每一班車是等可能的;

(2)他們各自到達車站的時刻是等可能的(有車就乘).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】等比數(shù)列{an}的各項均為正數(shù),且2a1+3a2=1, =9a2a6.

(1)求數(shù)列{an}的通項公式;

(2)設(shè)bn=log3a1+log3a2+…+log3an,求數(shù)列的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的可導(dǎo)函數(shù)f(x),其導(dǎo)函數(shù)記為f'(x),滿足f(x)+f(2﹣x)=(x﹣1)2 , 且當(dāng)x≤1時,恒有f'(x)+2<x.若 ,則實數(shù)m的取值范圍是(
A.(﹣∞,1]
B.
C.[1,+∞)
D.

查看答案和解析>>

同步練習(xí)冊答案