已知橢圓的左焦點為,左右頂點分別為,上頂點為,過三點作圓,其中圓心的坐標(biāo)為.

(Ⅰ)當(dāng)時,橢圓的離心率的取值范圍.

(Ⅱ)直線能否和圓相切?證明你的結(jié)論.

(Ⅰ)由題意的中垂線方程分別為,

于是圓心坐標(biāo)為.          …………………………………4分

=,即 ,

,所以,于是

所以,即 .                     ………………7分

(Ⅱ)假設(shè)相切, 則,   ………………………………………9分

,……11分

這與矛盾.

故直線不能與圓相切.      ………………………………………………12分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左焦點為F1(-c,0),C上存在一點P到橢圓左焦點的距離與到橢圓右準(zhǔn)線的距離相等.
(Ⅰ)求橢圓的離心率e的取值范圍;
(Ⅱ)若已知橢圓的左焦點為(-1,0),右準(zhǔn)線為x=4,圓x2+y2=
12
7
的切線與橢圓交于A、B兩點,求證:OA⊥OB(O為坐標(biāo)原點).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆安徽池州第一中學(xué)高二上學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

在平面直角坐標(biāo)系中,已知橢圓的左焦點為,且橢圓的離心率.

(1)求橢圓的方程;

(2)設(shè)橢圓的上下頂點分別為,是橢圓上異于的任一點,直線分別交軸于點,證明:為定值,并求出該定值;

(3)在橢圓上,是否存在點,使得直線與圓相交于不同的兩點,且的面積最大?若存在,求出點的坐標(biāo)及對應(yīng)的的面積;若不存在,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年甘肅省高三第三次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知橢圓的左焦點為F,過點F的直線交橢圓于A、B兩點,線段AB的中點為G,AB的中垂線與x軸和y軸分別交于D、E兩點.

(Ⅰ)若點G的橫坐標(biāo)為,求直線AB的斜率;

(Ⅱ)記△GFD的面積為S1,△OED(O為原點)的面積為S2

試問:是否存在直線AB,使得S1=S2?說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省四校高三上學(xué)期期末聯(lián)考文科數(shù)學(xué) 題型:解答題

(本小題滿分14分)

已知橢圓的左焦點為,離心率e=,M、N是橢圓上的動

點。

(Ⅰ)求橢圓標(biāo)準(zhǔn)方程;

(Ⅱ)設(shè)動點P滿足:,直線OM與ON的斜率之積為,問:是否存在定點,

使得為定值?,若存在,求出的坐標(biāo),若不存在,說明理由。

(Ⅲ)若在第一象限,且點關(guān)于原點對稱,點軸上的射影為,連接 并延長

交橢圓于點,證明:

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:浙江省舟山市09-10學(xué)年高二下學(xué)期期末聯(lián)考數(shù)學(xué)文 題型:選擇題

已知橢圓的左焦點為,右頂點為,點在橢圓上,且軸, 直線軸于點.若,則橢圓的離心率是(  )w.w.w.七彩教育網(wǎng).c.o.m   

A.         B.          C.            D. 

 

查看答案和解析>>

同步練習(xí)冊答案