已知,函數(shù),.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)求證:對(duì)于任意的,都有.
(1)單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為,;(2)證明過(guò)程詳見(jiàn)解析.

試題分析:本題主要考查導(dǎo)數(shù)的運(yùn)算、利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性、利用導(dǎo)數(shù)求函數(shù)的最值、恒成立問(wèn)題等基礎(chǔ)知識(shí),考查學(xué)生的分析問(wèn)題解決問(wèn)題的能力、轉(zhuǎn)化能力、計(jì)算能力.第一問(wèn),先對(duì)求導(dǎo),利用單調(diào)遞增,單調(diào)遞減,通過(guò)解不等式,求出函數(shù)的單調(diào)區(qū)間;第二問(wèn),由于對(duì)于任意的,都有 對(duì)于任意的,都有,利用導(dǎo)數(shù)判斷函數(shù)上的單調(diào)性,數(shù)形結(jié)合求出的最小值和的最大值,進(jìn)行比較,看是否符合.
(1)函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051807736293.png" style="vertical-align:middle;" />,,
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051807767398.png" style="vertical-align:middle;" />,
所以,當(dāng),或時(shí),;
當(dāng)時(shí),
所以,的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為,.        6分
(2)因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051807720447.png" style="vertical-align:middle;" />在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,
,
所以,當(dāng)時(shí),
,可得
所以當(dāng)時(shí),函數(shù)在區(qū)間上是增函數(shù),
所以,當(dāng)時(shí),
所以,當(dāng)時(shí),
對(duì)于任意的,都有,所以
當(dāng)時(shí),函數(shù)在區(qū)間上是增函數(shù),在區(qū)間上是減函數(shù),
所以,當(dāng)時(shí),
所以,當(dāng)時(shí),
對(duì)于任意的,都有,,所以
綜上,對(duì)于任意的,都有.      13分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(14分)(2011•福建)已知a,b為常數(shù),且a≠0,函數(shù)f(x)=﹣ax+b+axlnx,f(e)=2(e=2.71828…是自然對(duì)數(shù)的底數(shù)).
(I)求實(shí)數(shù)b的值;
(II)求函數(shù)f(x)的單調(diào)區(qū)間;
(III)當(dāng)a=1時(shí),是否同時(shí)存在實(shí)數(shù)m和M(m<M),使得對(duì)每一個(gè)t∈[m,M],直線y=t與曲線y=f(x)(x∈[,e])都有公共點(diǎn)?若存在,求出最小的實(shí)數(shù)m和最大的實(shí)數(shù)M;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)(其中),為f(x)的導(dǎo)函數(shù).
(1)求證:曲線y=在點(diǎn)(1,)處的切線不過(guò)點(diǎn)(2,0);
(2)若在區(qū)間中存在,使得,求的取值范圍;
(3)若,試證明:對(duì)任意,恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)
(1)若函數(shù)的圖象切x軸于點(diǎn)(2,0),求a、b的值;
(2)設(shè)函數(shù)的圖象上任意一點(diǎn)的切線斜率為k,試求的充要條件;
(3)若函數(shù)的圖象上任意不同的兩點(diǎn)的連線的斜率小于l,求證

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=ax2+bln x在x=1處有極值.
(1)求a,b的值;
(2)判斷函數(shù)y=f(x)的單調(diào)性并求出單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知函數(shù)f(x)=ln x-f′(-1)x2+3x-4,則f′(1)=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)函數(shù))是定義在(一,0)上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為,且有,則不等式的解集為-------------

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

處有極大值,則常數(shù)的值為_(kāi)________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè),若,則(   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案