選修4-5:不等式選講
已知函數(shù)f(x)=|2x+1|,g(x)=|x|+a-1
(1)當(dāng)a=1,解不等式f(x)≥g(x);
(2)若存在x∈R,使得f(x)≤g(x)成立,求實(shí)數(shù)a的取值范圍.
【答案】分析:(1)先寫出當(dāng)a=1時(shí)的不等式|2x+1|≥|x|,再利用兩邊平方整理化成一元二次不等式即可解決問題;
(2)先由f(x)≤g(x)分離出參數(shù)a得a-1≥|2x+1|-|x|,令h(x)=|2x+1|-|x|,下面求得h(x)的最小值,從而所求實(shí)數(shù)a的范圍.
解答:解:(1)當(dāng)a=1時(shí),由f(x)≥g(x)得|2x+1|≥|x|,
兩邊平方整理得3x2+4x+1≥0,解得x≤-1或x≥-,
∴原不等式的解集為(-∞,-1]∪[-,+∞)…(5分)
(Ⅱ)由f(x)≤g(x)得a-1≥|2x+1|-|x|,
令h(x)=|2x+1|-|x|,則 h(x)=…(7分)
故h(x)min=h(-)=-,從而所求實(shí)數(shù)a的范圍為a-1≥-,即a…(10分)
點(diǎn)評(píng):本題主要考查了絕對(duì)值不等式的解法、函數(shù)存在性問題.對(duì)于函數(shù)存在性問題,處理的方法是:利用分離參數(shù)法轉(zhuǎn)化為求函數(shù)的最值問題解決.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

選修4-5:不等式選講
設(shè)x,y,z∈(0,+∞),且x+y+z=1,求
1
x
+
4
y
+
9
z
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【選修4-5:不等式選講】
求下列不等式的解集
(Ⅰ)|2x-1|-|x+3|>0
(Ⅱ)x+|2x-1|>3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-5:不等式選講:
設(shè)正有理數(shù)x是
2
的一個(gè)近似值,令y=1+
1
1+x

(Ⅰ)若x>
2
,求證:y<
2
;
(Ⅱ)比較y與x哪一個(gè)更接近于
2
?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•鹽城模擬)(選修4-5:不等式選講)
已知a,b,c為正數(shù),且a2+a2+c2=14,試求a+2b+3c的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•烏魯木齊一模)選修4-5:不等式選講
設(shè)函數(shù),f(x)=|x-1|+|x-2|.
(I)求證f(x)≥1;
(II)若f(x)=
a2+2
a2+1
成立,求x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案