分析 (1)利用相互垂直的直線斜率之間的關(guān)系、點(diǎn)斜式即可得出.
(2)利用直線與坐標(biāo)軸相交可得C坐標(biāo),利用中點(diǎn)坐標(biāo)公式可得斜邊AC的中點(diǎn),設(shè)直線OB:y=kx,代入B可得k.
解答 解:(1)依題意,直角△ABC的直角頂點(diǎn)為$B(1,\sqrt{3})$
所以AB⊥BC,故kAB•kBC=-1,
又因?yàn)锳(-3,0),∴kAB=$\frac{\sqrt{3}-0}{1+2}$=$\frac{\sqrt{3}}{3}$,∴kBC=-$\frac{1}{{k}_{AB}}$=-$\sqrt{3}$.
∴邊BC所在的直線方程為:y-$\sqrt{3}$=-$\sqrt{3}$(x-1),即$\sqrt{3}$x+y-2$\sqrt{3}$=0.
(2)因?yàn)橹本BC的方程為$\sqrt{3}x+y-2\sqrt{3}=0$,點(diǎn)C在x軸上,
由y=0,得x=2,即C(2,0),
所以,斜邊AC的中點(diǎn)為(0,0),
故直角△ABC的斜邊中線為OB(O為坐標(biāo)原點(diǎn)).
設(shè)直線OB:y=kx,代入$B(1,\sqrt{3})$,得$k=\sqrt{3}$,
所以直角△ABC的斜邊中線OB的方程為$y=\sqrt{3}x$.
點(diǎn)評 本題考查了相互垂直的直線斜率之間的關(guān)系、中點(diǎn)坐標(biāo)公式、直線方程,考查了推理能力與計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{7}{8}$<P≤$\frac{15}{16}$ | B. | P>$\frac{15}{16}$ | C. | $\frac{3}{4}$<P≤$\frac{7}{8}$ | D. | $\frac{7}{8}$≤P<$\frac{15}{16}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com