設(shè)函數(shù)f(x)=ex+sinx,g(x)=ax,F(xiàn)(x)=f(x)-g(x).
(1)若x=0是F(x)的極值點,求實數(shù)a的值;
(2)若x>0時,函數(shù)y=F(x)的圖象恒在y=F(-x)的圖象上方,求實數(shù)a的取值范圍.
解:(1)F(x)=ex+sinx-ax,求導(dǎo)函數(shù)可得F′(x)=ex+cosx-a.
因為x=0是F(x)的極值點,所以F′(0)=1+1-a=0,∴a=2.
當a=2時,若x<0,F(xiàn)′(x)=ex+cosx-a<0;若x>0,F(xiàn)′(x)=ex+cosx-a>0;
∴x=0是F(x)的極小值點,∴a=2符合題意;
(2)令h(x)=F(x)-F(-x)=ex-e-x+2sinx-2ax,則h′(x)=ex+e-x+2cosx-2a,S(x)=h″(x)=ex-e-x-2sinx.
因為S′(x)=ex+e-x-2cosx≥0,當x>0時恒成立,所以函數(shù)S(x)在(0,+∞)上單調(diào)遞增,
∴S(x)≥S(0)=0當x∈(0,+∞)時恒成立;
因此函數(shù)h′(x)在[0,+∞)上單調(diào)遞增,h′(x)≥h′(0)=4-2a,當x∈(0,+∞)時恒成立.
當a≤2時,h′(x)≥0,h(x)在(0,+∞)單調(diào)遞增,即h(x)≥h(0)=0.
故a≤2時,F(xiàn)(x)>F(-x)恒成立.
當a>2時,∵h′(x)在[0,+∞)上單調(diào)遞增,∴總存在x0∈(0,+∞)使得在區(qū)間[0,x0)上h′(x)<0,
∴h(x)在區(qū)間[0,x0)上遞減,而h(0)=0
∴當x∈(0,x0)時,h(x)<0,這與F(x)-F(-x)≥0對x∈[0,+∞)恒成立矛盾
∴a>2不合題意
綜上a的取值范圍是(-∞,2].
分析:(1)求導(dǎo)函數(shù),利用x=0是F(x)的極值點,即F′(0)=0,可求a的值,再驗證導(dǎo)數(shù)的符號的改變;
(2)令h(x)=F(x)-F(-x)=ex-e-x+2sinx-2ax,求導(dǎo)函數(shù)可得h′(x)=ex+e-x+2cosx-2a,再求導(dǎo)函數(shù)S(x)=h″(x)=ex-e-x-2sinx,確定S(x)≥S(0)=0當x∈(0,+∞)時恒成立,從而可得函數(shù)h′(x)在[0,+∞)上單調(diào)遞增,h′(x)≥h′(0)=4-2a,當x∈(0,+∞)時恒成立,進而分類討論,即可確定實數(shù)a的取值范圍.
點評:本題考查導(dǎo)數(shù)知識的運用,考查函數(shù)的極值,考查函數(shù)的單調(diào)性,考查恒成立問題,構(gòu)造函數(shù),用好導(dǎo)數(shù)是關(guān)鍵.