直線y=kx+1與曲線y=x3+ax+b相切于點(diǎn)A(l,3),則k的值等于( )
A.2
B.-1
C.1
D.-2
【答案】分析:將點(diǎn)A(l,3),代入直線y=kx+1,即可求得k的值.
解答:解:∵直線y=kx+1與曲線y=x3+ax+b相切于點(diǎn)A(l,3),
∴3=k+1,∴k=2
故選A.
點(diǎn)評(píng):本題考查直線與曲線相切,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•閔行區(qū)一模)設(shè)雙曲線C:
x2
a2
-
y2
b2
=1(a,b>0)
的虛軸長(zhǎng)為2
3
,漸近線方程是y=±
3
x
,O為坐標(biāo)原點(diǎn),直線y=kx+m(k,m∈R)與雙曲線C相交于A、B兩點(diǎn),且
OA
OB

(1)求雙曲C的方程;
(2)求點(diǎn)P(k,m)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)雙曲線C:數(shù)學(xué)公式的虛軸長(zhǎng)為2數(shù)學(xué)公式,漸近線方程是y=數(shù)學(xué)公式,O為坐標(biāo)原點(diǎn),直線y=kx+m(k,m∈R)與雙曲線C相交于A、B兩點(diǎn),且數(shù)學(xué)公式
(1)求雙曲C的方程;
(2)求點(diǎn)P(k,m)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年上海市閔行區(qū)高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

設(shè)雙曲線C:的虛軸長(zhǎng)為2,漸近線方程是y=,O為坐標(biāo)原點(diǎn),直線y=kx+m(k,m∈R)與雙曲線C相交于A、B兩點(diǎn),且
(1)求雙曲C的方程;
(2)求點(diǎn)P(k,m)的軌跡方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案