拋物線y2=4mx(m>0)的焦點為F,點P為該拋物線上的動點,又點A(-m,0),則
|PF|
|PA|
的最小值為
 
考點:拋物線的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:設(shè)P(x,
4mx
),求出(
|PF|
|PA|
2,再利用基本不等式,即可得出結(jié)論.
解答: 解:由題意,設(shè)P(x,
4mx
),
∴(
|PF|
|PA|
2=
(x-m)2+4mx
(x+m)2+4mx
=
x2+m2+2mx
x2+m2+6mx
=1-
4
x
m
+
m
x
+6

≥1-
1
2
=
1
2
(當且僅當x=m時取等號),
∴x=m時,
|PF|
|PA|
的最小值為
2
2

故答案為:
2
2
點評:本題考查基本不等式的運用,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義在(0,+∞)上的函數(shù)f(x)的導(dǎo)函數(shù)f′(x)<0恒成立,且f(4)=1,若f(x+y)≤1,則x2+y2的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知log2x+log2y=1,則x+y的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+bx+c(a>0,c<0)的零點為x1,x2(x1<x2),函數(shù)f(x)的最小值為y0,且y0≤-x2,則函數(shù)y=f(|f(x)|)的零點個數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
.
sinx4cosx
13
.
的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-2sin(2x+φ)(|φ|<π),若(
π
8
,
8
)是f(x)的一個單調(diào)遞增區(qū)間,則φ的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x>1,則函數(shù)y=
1
x-1
+x的最小值是( 。
A、3B、4C、2D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)動點P(x,y)滿足
2x+y≤4
x+2y≥2
x≥0
,則z=x-y的最小值是( 。
A、2B、-4C、-1D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:(x-a)2+(y-b)2=r2的圓心為拋物線x2=-4y的焦點,直線x+y=1與圓C相切,則該圓的方程為( 。
A、(x+1)2+y2=
1
2
B、x2+(y+1)2=2
C、(x-2)2+y2=
1
2
D、x2+(y-2)2=
1
2

查看答案和解析>>

同步練習(xí)冊答案