已知拋物線y2=-2px(p>0),過(guò)其焦點(diǎn)的直線與拋物線交于M(x1,y1),N(x2,y2),若x1x2=1,則拋物線準(zhǔn)線方程為( 。
分析:設(shè)直線方程與拋物線方程聯(lián)立,利用韋達(dá)定理及x1x2=1,即可求得拋物線準(zhǔn)線方程.
解答:解:設(shè)直線方程為x=my-
p
2
,與拋物線方程聯(lián)立可得y2+2mpy-p2=0
∴y1+y2=-2mp,y1y2=-p2
∴x1x2=(my1-
p
2
)(my2-
p
2
)=
p2
4
=1
p
2
=1
∴拋物線準(zhǔn)線方程為x=
p
2
=1
故選D.
點(diǎn)評(píng):本題考查直線與拋物線的位置關(guān)系,考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y2=2x的焦點(diǎn)是F,點(diǎn)P是拋物線上的動(dòng)點(diǎn),又有點(diǎn)A(3,2),求|PA|+|PF|的最小值,并求出取最小值時(shí)P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y2=8x的焦點(diǎn)F與橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的一個(gè)焦點(diǎn)重合,它們?cè)诘谝幌笙迌?nèi)的交點(diǎn)為A,且AF與x軸垂直,則橢圓的離心率為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,已知拋物線y2=2px(p>0)的焦點(diǎn)恰好是橢圓
x2
a2
+
y2
b2
=1
的右焦點(diǎn)F,且兩條曲線的交點(diǎn)連線也過(guò)焦點(diǎn)F,則該橢圓的離心率為
2
-1
2
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y2=4x,焦點(diǎn)為F,頂點(diǎn)為O,點(diǎn)P(m,n)在拋物線上移動(dòng),Q是OP的中點(diǎn),M是FQ的中點(diǎn).
(1)求點(diǎn)M的軌跡方程.
(2)求
nm+3
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y2=2px(p>0)的焦點(diǎn)為F,A,B,C為拋物線上三點(diǎn).若
FA
+
FB
+
FC
=
0
,且|
FA
|+|
FB
|+|
FC
|=6

(1)求拋物線方程;
(2)(文)若OA⊥OB,直線AB與x軸交于一點(diǎn)(m,0),求m.
(2)(理)若以為AB為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn)O,則求證直線AB經(jīng)過(guò)一定點(diǎn),并求出定點(diǎn)坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案