【題目】已知兩直線方程,點(diǎn)上運(yùn)動(dòng),點(diǎn)上運(yùn)動(dòng),且線段的長(zhǎng)為定值.

(Ⅰ)求線段的中點(diǎn)的軌跡方程;

(Ⅱ)設(shè)直線與點(diǎn)的軌跡相交于,兩點(diǎn),為坐標(biāo)原點(diǎn),若,求原點(diǎn)的直線的距離的取值范圍.

【答案】(Ⅰ)(Ⅱ)

【解析】

(Ⅰ)利用已知條件設(shè),,,建立的關(guān)系,利用線段的長(zhǎng)化簡(jiǎn)計(jì)算即可;

(Ⅱ)聯(lián)立直線方程與橢圓方程,化為關(guān)于x的一元二次方程,由判別式大于0求得m24k2+1,再由,可得,從而求得k的范圍,再由點(diǎn)到直線的距離公式求出原點(diǎn)O到直線l的距離,則取值范圍可求.

(Ⅰ)∵點(diǎn)上運(yùn)動(dòng),點(diǎn)上運(yùn)動(dòng),

∴設(shè),,線段的中點(diǎn),則有,

∵線段的長(zhǎng)為定值,∴+=8,

+=8,化簡(jiǎn)得.

∴線段的中點(diǎn)的軌跡方程為.

(Ⅱ)設(shè),,聯(lián)立 ,

,化簡(jiǎn)得①.

,

,

,則,即,

所以

,化簡(jiǎn)得②,

由①②得,,

因?yàn)?/span>到直線的距離,所以

又因?yàn)?/span>,所以,

所以到直線的距離的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法錯(cuò)誤的是( )

A. 在回歸模型中,預(yù)報(bào)變量的值不能由解釋變量唯一確定

B. 若變量,滿足關(guān)系,且變量正相關(guān),則也正相關(guān)

C. 在殘差圖中,殘差點(diǎn)分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高

D. 以模型去擬合一組數(shù)據(jù)時(shí),為了求出回歸方程,設(shè),將其變換后得到線性方程,則,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某網(wǎng)絡(luò)營(yíng)銷(xiāo)部門(mén)為了統(tǒng)計(jì)某市網(wǎng)友某日在某淘寶店的網(wǎng)購(gòu)情況,隨機(jī)抽查了該市當(dāng)天名網(wǎng)友的網(wǎng)購(gòu)金額情況,得到如下統(tǒng)計(jì)表(如圖).

網(wǎng)購(gòu)金額(單位:千元)

頻數(shù)

頻率

3

0.05

9

0.15

15

0.25

18

0.30

若網(wǎng)購(gòu)金額超過(guò)千元的顧客定義為網(wǎng)購(gòu)達(dá)人,網(wǎng)購(gòu)金額不超過(guò)千元的顧客定義為非網(wǎng)購(gòu)達(dá)人,已知非網(wǎng)購(gòu)達(dá)人網(wǎng)購(gòu)達(dá)人人數(shù)比恰好為

(Ⅰ)試確定的值,并補(bǔ)全頻率分布直方圖(如圖);

(Ⅱ)該營(yíng)銷(xiāo)部門(mén)為了進(jìn)一步了解這名網(wǎng)友的購(gòu)物體驗(yàn),從非網(wǎng)購(gòu)達(dá)人網(wǎng)購(gòu)達(dá)人中用分層抽樣的方法抽取人,若需從這人中隨機(jī)選取人進(jìn)行問(wèn)卷調(diào)查.設(shè)為選取的人中網(wǎng)購(gòu)達(dá)人的人數(shù),求的分布列及其數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于旋轉(zhuǎn)體的體積,有如下的古爾。guldin)定理:平面上一區(qū)域D繞區(qū)域外一直線(區(qū)域D的每個(gè)點(diǎn)在直線的同側(cè),含直線上)旋轉(zhuǎn)一周所得的旋轉(zhuǎn)體的體積,等于D的面積與D的幾何中心(也稱為重心)所經(jīng)過(guò)的路程的乘積.利用這一定理,可求得半圓盤(pán),繞直線x旋轉(zhuǎn)一周所形成的空間圖形的體積為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】正三角形的邊長(zhǎng)為,將它沿高折疊,使點(diǎn)與點(diǎn)間的距離為,則四面體外接球的表面積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點(diǎn).

(1) 證明:PB∥平面AEC

(2) 設(shè)二面角D-AE-C為60°,AP=1,AD=,求三棱錐E-ACD的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐中,是邊長(zhǎng)為4的正三角形, ,分別為的中點(diǎn),且.

(1)證明:平面ABC;

(2)求二面角的余弦值;

(3)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某機(jī)器生產(chǎn)商,對(duì)一次性購(gòu)買(mǎi)兩臺(tái)機(jī)器的客戶推出兩種超過(guò)質(zhì)保期后兩年內(nèi)的延保維修方案:

方案一:交納延保金元,在延保的兩年內(nèi)可免費(fèi)維修次,超過(guò)次每次收取維修費(fèi)元;

方案二:交納延保金元,在延保的兩年內(nèi)可免費(fèi)維修次,超過(guò)次每次收取維修費(fèi)元.

某工廠準(zhǔn)備一次性購(gòu)買(mǎi)兩臺(tái)這種機(jī)器,現(xiàn)需決策在購(gòu)買(mǎi)機(jī)器時(shí)應(yīng)購(gòu)買(mǎi)哪種延保方案,為此搜集并整理了臺(tái)這種機(jī)器超過(guò)質(zhì)保期后延保兩年內(nèi)維修的次數(shù),統(tǒng)計(jì)得下表:

維修次數(shù)

0

1

2

3

機(jī)器臺(tái)數(shù)

20

10

40

30

以上臺(tái)機(jī)器維修次數(shù)的頻率代替一臺(tái)機(jī)器維修次數(shù)發(fā)生的概率,記表示這兩臺(tái)機(jī)器超過(guò)質(zhì)保期后延保兩年內(nèi)共需維修的次數(shù).

的分布列;

以所需延保金與維修費(fèi)用之和的期望值為決策依據(jù),該工廠選擇哪種延保方案更合算?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某部門(mén)經(jīng)統(tǒng)計(jì),客戶對(duì)不同款型理財(cái)產(chǎn)品的最滿意程度百分比和對(duì)應(yīng)的理財(cái)總銷(xiāo)售量(萬(wàn)元)如下表(最滿意度百分比超高時(shí)總銷(xiāo)售量最高):

產(chǎn)品款型

A

B

C

D

E

F

G

H

I

J

最滿意度%

20

34

25

19

26

20

19

24

19

13

總銷(xiāo)量(萬(wàn)元)

80

89

89

78

75

71

65

62

60

52

設(shè)表示理財(cái)產(chǎn)品最滿意度的百分比,為該理財(cái)產(chǎn)品的總銷(xiāo)售量(萬(wàn)元).這些數(shù)據(jù)的散點(diǎn)圖如圖所示.

(1)在款型理財(cái)產(chǎn)品的顧客滿意度調(diào)查資料中任取份;只有一份最滿意的,求含有最滿意客戶資料事件的概率.

(2)我們約定:相關(guān)系數(shù)的絕對(duì)值在以下是無(wú)線性相關(guān),在以上(含)至是一般線性相關(guān),在以上(含)是較強(qiáng)線性相關(guān),若沒(méi)有達(dá)到較強(qiáng)線性相關(guān)則采取“末位”剔除制度(即總銷(xiāo)售量最少的那一款產(chǎn)品退出理財(cái)銷(xiāo)售);試求在剔除“末位”款型后的線性回歸方程(系數(shù)精確到).

數(shù)據(jù)參考計(jì)算值:

項(xiàng)目

21.9

72.1

288.9

37.16

452.1

17.00

附:回歸直線方程的斜率和截距的最小二乘法估計(jì)分別為:

線性相關(guān)系數(shù) .

查看答案和解析>>

同步練習(xí)冊(cè)答案