已知雙曲線x2-
y2
2
=1,點A(-1,0),在雙曲線上任取兩點P,Q滿足AP⊥AQ,則直線PQ恒過點( 。
A.(3,0)B.(1,0)C.(-3,0)D.(4,0)
設PQ的方程為x=my+b,則由
x2-
y2
2
=1
x=my+b
得:(m2-
1
2
)y2+2bmy+b2-1=0,設P(x1,y1),Q(x2,y2),
則y1,y2是該方程的兩根,
∴y1+y2=
2bm
1
2
-m2
,y1•y2=
b2-1
m2-
1
2

又A(-1,0),AP⊥AQ,
y1
x1+1
y2
x2+1
=-1,
∴y1y2+(x1+1)(x2+1)=0,又x1=my1+b,x2=my2+m,
∴(1+m2)y1y2+(b+1)m(y1+y2)+(b+1)2=0①,將y1+y2=
2bm
1
2
-m2
,y1•y2=
b2-1
m2-
1
2
代入①得:
b2-1
m2-
1
2
(1+m2)-
2bm2(b+1)
m2-
1
2
+(b+1)2=0,
整理得:(b2-1)(1+m2)-2bm2(b+1)+(m2-
1
2
)(b+1)2=0,
∴b2-2b-3=0,
∴b=3或b=-1.
當b=-1時,PQ過(-1,0),即A點,與題意不符,故舍去.
當b=3時,PQ過定點(3,0).
故選A.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

3、已知雙曲線x2-y2+1=0與拋物線y2=(k-1)x至多有兩個公共點,則k的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線x2-y2=2的左、右焦點分別為F1,F(xiàn)2,過點F2的動直線與雙曲線相交于A,B兩點.若動點M滿足
F1M
=
F1A
+
F1B
+
F1O
(其中O為坐標原點),求點M的軌跡方程;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線x2-y2=a2(a>0)的左、右頂點分別為A、B,雙曲線在第一象限的圖象上有一點P,∠PAB=α,∠PBA=β,∠APB=γ,則(  )
A、tanα+tanβ+tanγ=0B、tanα+tanβ-tanγ=0C、tanα+tanβ+2tanγ=0D、tanα+tanβ-2tanγ=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線x2-y2=λ與橢圓
x2
16
+
y2
64
=1
有共同的焦點,則λ的值為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•臺州一模)已知雙曲線x2-y2=4a(a∈R,a≠0)的右焦點是橢圓
x2
16
+
y2
9
=1
的一個頂點,則a=
2
2

查看答案和解析>>

同步練習冊答案