已知函數(shù)(m為常數(shù),e=2.71828…是自然對數(shù)的底數(shù)),函數(shù) 的最小值為1,其中 是函數(shù)f(x)的導數(shù).

(1)求m的值.

(2)判斷直線y=e是否為曲線f(x)的切線,若是,試求出切點坐標和函數(shù)f(x)的單調(diào)區(qū)間;若不是,請說明理由.

 

【答案】

(1) 1  ;(2)是,(1,e);單調(diào)減區(qū)間(0,+∞).

【解析】

試題分析:(1)求導數(shù),轉(zhuǎn)化為分式不等式,最后根據(jù)不等式的基本性質(zhì)求解即可.(2)利用導數(shù)的幾何意義,求過(1,e)的切線即可驗證.

試題解析:由,得,∞),

=,

所以2-m=1,解得m=1.

(2)由(1)得,得,令h(x)=,則=,

時,>0,當∞)時,<0,所以h(x)max=h(1)=0.

又因為ex>0,所以可得當∞)時,恒成立.故當∞)時,函數(shù)單調(diào)遞減.

因為,所以曲線在(1,e)點出的切線方程為y-e=0(x-1),即y=e.

所以直線y=e是曲線f(x)的切線,切點坐標(1,e),且∞)上單調(diào)遞減.

考點:1.求導;2.導數(shù)的幾何意義;3.導數(shù)性質(zhì)的應用.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2010-2011學年福建省南靖一中高二文科上學期期末考試試卷 題型:解答題

已知函數(shù)(m為常數(shù),且m>0)有極大值9.
(Ⅰ)求m的值;
(Ⅱ)若斜率為-5的直線是曲線的切線,求此直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年四川省成都市高三第二次診斷性檢測文科數(shù)學試卷(解析版) 題型:選擇題

已知函數(shù)(m為常數(shù)),對任意的 恒成立.有下列說法:

①m=3;

②若(b為常數(shù))的圖象關于直線x=1對稱,則b=1;

③已知定義在R上的函數(shù)F(x)對任意x均有成立,且當時,;又函數(shù)(c為常數(shù)),若存在使得成立,則c的取值范圍是(一1,13).

其中說法正確的個數(shù)是

(A)3 個   (B)2 個   (C)1 個   (D)O 個

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010年河南省鄭州外國語學校高二下學期期中考試數(shù)學卷(理) 題型:解答題

(本小題12分)已知函數(shù)m為常數(shù),m>0)有極大值9.

(1)求m的值;

(2)若斜率為-5的直線是曲線的切線,求此直線方程.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010年廣東省高考沖刺強化訓練試卷八文科數(shù)學 題型:解答題

(本小題滿分12分) 已知函數(shù)m為常數(shù),且m>0)有極大值9.

  (Ⅰ)求m的值;

  (Ⅱ)若斜率為的直線是曲線的切線,求此直線方程.

 

查看答案和解析>>

同步練習冊答案