設(shè)集合M={m∈z|-3<m<2},N={n∈z|-1≤n≤3},則M∩N=( )
A.{0,1}
B.{-1,0,1}
C.{0,1,2}
D.{-1,0,1,2}
【答案】分析:由題意知集合M={m∈z|-3<m<2},N={n∈z|-1≤n≤3},然后根據(jù)交集的定義和運(yùn)算法則進(jìn)行計(jì)算.
解答:解:∵M(jìn)={-2,-1,0,1},N={-1,0,1,2,3},
∴M∩N={-1,0,1},
故選B.
點(diǎn)評(píng):此題主要考查集合和交集的定義及其運(yùn)算法則,是一道比較基礎(chǔ)的題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

65、設(shè)集合M={m∈z|-3<m<2},N={n∈z|-1≤n≤3},則M∩N=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

1、設(shè)集合M={m∈Z|-3<m<2},N={x|x2-x=0},則M∩N=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

1、設(shè)集合M={m∈Z|m≤-3或m≥2},N={n∈Z|-1≤n≤3},則(CZM)∩N=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•重慶一模)設(shè)數(shù)列{an}的各項(xiàng)都為正數(shù),其前n項(xiàng)和為Sn,已知對(duì)任意n∈N*,2
Sn
是an+2 和an的等比中項(xiàng).
(Ⅰ)證明數(shù)列{an}為等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)證明
1
S1
+
1
S2
+…+
1
Sn
<1;
(Ⅲ)設(shè)集合M={m|m=2k,k∈Z,且1000≤k<1500},若存在m∈M,使對(duì)滿足n>m 的一切正整數(shù)n,不等式2Sn-4200>
an2
2
恒成立,求這樣的正整數(shù)m共有多少個(gè)?

查看答案和解析>>

同步練習(xí)冊(cè)答案