如圖,設P是圓x2+y2=2上的動點,PD⊥x軸,垂足為D,M為線段PD上一點,且|PD|=
2
|MD|,點A、F1的坐標分別為(0,
2
),(-1,0).
(1)求點M的軌跡方程;
(2)求|MA|+|MF1|的最大值,并求此時點M的坐標.
(1)設M的坐標為(x,y),P的坐標為(xp,yp
∵PD⊥x軸,垂足為D,M為線段PD上一點,且|PD|=
2
|MD|,
∴xp=x,yp=
2
y
∵P是圓x2+y2=2上的動點,
∴x2+2y2=2;
(2)由(1)知,M的軌跡方程是橢圓,F(xiàn)1是左焦點,設右焦點為F2,坐標為(1,0)
∴|MA|+|MF1|=2
2
+|MA|-|MF2|≤2
2
+|AF2|=2
2
+
3

當A,F(xiàn)2,M三點共線,且M在AF2延長線上時,取等號
直線AF2的方程為x+
y
2
=1
,與橢圓方程聯(lián)立,解得x=
4+
6
5
,y=
2
-2
3
5

∴所求最大值為2
2
+
3
,此時M的坐標為(
4+
6
5
2
-2
3
5
).
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的焦點為F1(-1,0),F(xiàn)2(1,0),且經(jīng)過點P(1,
3
2
)

(Ⅰ)求橢圓C的方程;
(Ⅱ)設過F1的直線l與橢圓C交于A、B兩點,問在橢圓C上是否存在一點M,使四邊形AMBF2為平行四邊形,若存在,求出直線l的方程,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C的中心在原點,焦點y在軸上,焦距為2
3
,且過點M(-
13
4
,
3
2
)

(1)求橢圓C的方程;
(2)若過點N(
1
2
,1)
的直線l交橢圓C于A、B兩點,且N恰好為AB中點,能否在橢圓C上找到點D,使△ABD的面積最大?若能,求出點D的坐標;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,
ADB
為半圓,AB為半圓直徑,O為半圓圓心,且OD⊥AB,Q為線段OD的中點,已知|AB|=4,曲線C過Q點,動點P在曲線C上運動且保持|PA|+|PB|的值不變.
(Ⅰ)建立適當?shù)钠矫嬷苯亲鴺讼,求曲線C的方程;
(Ⅱ)過點B的直線l與曲線C交于M、N兩點,與OD所在直線交于E點,若
EM
=λ1
MB
EN
=λ2
NB
,求證:λ1+λ2
為定值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知直線l與橢圓
x2
36
+
y2
9
=1
交于A和B兩點,點(4,2)是線段AB的中點,則直線l的方程是______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,過拋物線y2=2px(p>0)的頂點作兩條互相垂直的弦OA、OB.
(1)設OA的斜率為k,試用k表示點A、B的坐標;
(2)求弦AB中點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知圓E:(x+
3
2+y2=16,點F(
3
,0),P是圓E上任意一點.線段PF的垂直平分線和半徑PE相交于Q.
(Ⅰ)求動點Q的軌跡Γ的方程;
(Ⅱ)已知A,B,C是軌跡Γ的三個動點,A與B關(guān)于原點對稱,且|CA|=|CB|,問△ABC的面積是否存在最小值?若存在,求出此時點C的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設集合A={(x,y)|y=2x-1,x∈N*},B={(x,y)|y=ax2-ax+a,x∈N*},問是否存在非零整數(shù)a,使A∩B≠∅?若存在,請求出a的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,⊙的直徑,延長線上的一點,過點作⊙的切線,切點為,連接,若,               

查看答案和解析>>

同步練習冊答案