A. | $\frac{25}{3}$ | B. | $\frac{23}{7}$ | C. | $\frac{8}{7}$ | D. | $\frac{6}{5}$ |
分析 根據(jù)1=$\frac{1}{2}$+$\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{a}$+$\frac{1}$+$\frac{1}{30}$+$\frac{1}{42}$+$\frac{1}{56}$+$\frac{1}{72}$+$\frac{1}{90}$+$\frac{1}{110}$+$\frac{1}{132}$+$\frac{1}{156}$,結(jié)合裂項相消法,可得 $\frac{1}{a}$+$\frac{1}$=$\frac{a+b}{ab}$=$\frac{33}{260}$,解得a,b值,可得答案.
解答 解:∵2=1×2,
6=2×3,
30=5×6,
42=6×7,
56=7×8,
72=8×9,
90=9×10,
110=10×11,
132=11×12,
∵1=$\frac{1}{2}$+$\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{a}$+$\frac{1}$+$\frac{1}{30}$+$\frac{1}{42}$+$\frac{1}{56}$+$\frac{1}{72}$+$\frac{1}{90}$+$\frac{1}{110}$+$\frac{1}{132}$+$\frac{1}{156}$,
∴$\frac{1}{a}$+$\frac{1}$=$\frac{a+b}{ab}$=$\frac{33}{260}$,∴a=13,b=20,
則$\frac{x+y+4}{x+2}$=1+$\frac{y+2}{x+2}$,
∵1≤x≤13,1≤y≤20,
∴y=1,x=13時,$\frac{x+y+4}{x+2}$的最小值為$\frac{6}{5}$,
故選:D.
點(diǎn)評 本題考查歸納推理,考查學(xué)生的計算能力,確定a,b的值是關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ¬p為假 | B. | ¬p∧¬q為真 | C. | p∨q為真 | D. | q為真 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 40 | B. | 42 | C. | 44 | D. | 45 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{10}$ | B. | $\frac{1}{5}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
分組 | 頻數(shù) | 頻率 |
[150,160) | 2 | |
[160,170) | n1 | f1 |
[170,180) | 14 | |
[180,190) | n2 | f2 |
[190,200] | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-$\frac{11}{4}$,+∞) | B. | (-∞,-$\frac{13}{2}$] | C. | (-∞,-$\frac{11}{4}$] | D. | [-$\frac{13}{2}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com