【題目】設函數(shù)f(x)=|2x+1|+|x+1|.

(Ⅰ)求不等式f(x)≤8的解集;

(Ⅱ)若不等式f(x)>|a-2|對任意x∈R恒成立,求實數(shù)a的取值范圍.

【答案】(Ⅰ) (Ⅱ)a∈.

【解析】試題分析:1, 三段解不等式,得結論;

(2)本題不等式恒成立,只要求得f(x)原最小值,然后解不等式|a-2|<即可.

試題解析:(Ⅰ)f(x)=

f(x)≤8,則

∴-≤x≤2或-1<x<-或-≤10≤-1,

∴-≤x≤2,∴f(x)≤8的解集為.

(Ⅱ)由(Ⅰ)得f(x)最小值為

依題意,|a-2|<,∴<a<,即a∈.

點晴:含絕對值不等式的解法由兩個基本方法,一是運用零點分區(qū)間討論,二是利用絕對值的幾何意義求解.法一是運用分類討論的思想,法二是運用數(shù)形結合思想,將絕對值不等式與函數(shù)以及不等式恒成立交匯、滲透,解題時強化函數(shù)、數(shù)形結合與轉化化歸思想方法的靈活應用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C 的左焦點為F(10),經(jīng)過點F的直線l0與橢圓交于AB兩點.當直線l0x軸時,|AB|.

(1)求橢圓C的方程;

(2)作直線lx軸,分別過A,BAA1l,垂足為A1,BB1l,垂足為B1,且△A1FB1是直角三角形.問:是否存在直線l使得∠A1FO2B1FO?若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在數(shù)列{an}中,a1=1,a2=2,數(shù)列{anan+1}是公比為q (q>0)的等比數(shù)列,則數(shù)列{an}的前2n項和S2n____________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示的多面體中,底面ABCD為正方形,△GAD為等邊三角形,BF⊥平面ABCD,∠GDC=90°,點E是線段GC上除兩端點外的一點,若點P為線段GD的中點.

(Ⅰ)求證:AP⊥平面GCD;

(Ⅱ)求證:平面ADG∥平面FBC

(Ⅲ)若AP∥平面BDE,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】P2P平臺需要了解該平臺投資者的大致年齡分布,發(fā)現(xiàn)其投資者年齡大多集中在區(qū)間[20,50]歲之間,對區(qū)間[20,50]歲的人群隨機抽取20人進行了一次理財習慣調(diào)查,得到如下統(tǒng)計表和各年齡段人數(shù)頻率分布直方圖:

組數(shù)

分組

人數(shù)(單位:人)

第一組

[20,25)

2

第二組

[25,30)

a

第三組

[30,35)

5

第四組

[35,40)

4

第五組

[40,45)

3

第六組

[45,50]

2

 

()a的值并畫出頻率分布直方圖;

()在統(tǒng)計表的第五與第六組的5人中,隨機選取2人,求這2人的年齡都小于45歲的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓E 經(jīng)過點,離心率為.

(1)求橢圓E的標準方程;

(2)A1,A2分別是橢圓E的左、右頂點,過點A2作直線lx軸垂直,點P是橢圓E上的任意一點(不同于橢圓E的四個頂點),連接PA1交直線l于點B,點Q為線段A2B的中點,求證:直線PQ與橢圓E只有一個公共點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線x2y,點,拋物線上的點,過點B作直線AP的垂線,垂足為Q.

(1)求直線AP斜率的取值范圍;

(2)|PA|·|PQ|的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱ABC-A1B1C1中,CC1⊥平面ABC,M是CC1中點.

(Ⅰ)求證:平面AB1M⊥平面A1ABB1;

(Ⅱ)過點C作一截面與平面AB1M平行,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,ABCD是邊長為3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AFBE與平面ABCD所成角為60°

)求證:AC⊥平面BDE;

)求二面角F﹣BE﹣D的余弦值.

查看答案和解析>>

同步練習冊答案