如圖,在四棱錐中,平面,底面是菱形,,.
(Ⅰ)求證:;
(Ⅱ)若,求二面角的余弦值.
(Ⅰ)先證,,進而證明⊥平面,從而得證;
(Ⅱ)
【解析】
試題分析:(Ⅰ)證明:因為四邊形是菱形,所以.
又因為平面,所以.
又,所以⊥平面.
又平面,所以 ……6分
(Ⅱ)依題意,知
平面平面,交線為,
過點作,垂足為,則平面.
在平面內(nèi)過作,垂足為,連,
則⊥平面,所以為二面角的一個平面角 . ……9分
∵,,
∴, . ……10分
又,故. 所以. ……11分
∴.
即二面角的余弦值為. ……12分
考點:本小題主要考查空間中線線垂直的證明和二面角的求解.
點評:在空間中證明直線、平面間的位置關(guān)系時,要緊扣判定定理和性質(zhì)定理,定理中要求的條件要一一列舉出來,缺一不可.
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
如圖,在四棱錐中,側(cè)面
是正三角形,且與底面垂直,底面是邊長為2的菱形,,是中點,過、、三點的平面交于.
(1)求證:; (2)求證:是中點;(3)求證:平面⊥平面.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本小題滿分12分)
如圖,在四棱錐中,底面為菱形,,為的中點。
(1)點在線段上,,
試確定的值,使平面;
(2)在(1)的條件下,若平面平
面ABCD,求二面角的大小。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本小題滿分12分)
如圖,在四棱錐中,底面為菱形,,為的中點。
(1)點在線段上,,
試確定的值,使平面;
(2)在(1)的條件下,若平面平
面ABCD,求二面角的大小。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com