【題目】下列各點(diǎn)中,在不等式表示的平面區(qū)域內(nèi)的是( )

A. B. C. D.

【答案】C

【解析】

根據(jù)題意,依次將選項(xiàng)中點(diǎn)的坐標(biāo)代入不等式2x+y﹣60,驗(yàn)證其是否成立,若成立,則

在不等式表示的平面區(qū)域內(nèi),否則不在,綜合即可得答案.

根據(jù)題意,依次分析選項(xiàng):

對于A,將(0,7)代入不等式2x+y﹣60,可得7﹣60,不等式不成立,點(diǎn)(0,7)不

在不等式2x+y﹣60表示的平面區(qū)域內(nèi),A錯(cuò)誤;

對于B,將(5,0)代入不等式2x+y﹣60,可得10﹣60,不等式不成立,點(diǎn)(5,0)

不在不等式2x+y﹣60表示的平面區(qū)域內(nèi),B錯(cuò)誤;

對于C,將(0,6)代入不等式2x+y﹣60,可得6﹣60,不等式成立,點(diǎn)(0,6)在不

等式2x+y﹣60表示的平面區(qū)域內(nèi),C正確;

對于D,將(2,3)代入不等式2x+y﹣60,可得7﹣60,不等式不成立,點(diǎn)(2,3)不

在不等式2x+y﹣60表示的平面區(qū)域內(nèi),D錯(cuò)誤;

故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱錐的側(cè)面是等腰直角三角形,,,,且

(1)求證:平面平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱錐ABCD的棱長都相等,E是AB的中點(diǎn),則異面直線CE與BD所成角的余弦值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=|x﹣a|,a<0.
(1)證明f(x)+f(﹣ )≥2;
(2)若不等式f(x)+f(2x)< 的解集非空,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)已知圓的圓心是直線軸的交點(diǎn),且與直線相切,求圓的標(biāo)準(zhǔn)方程;

(2)已知圓,直線過點(diǎn)與圓相交于兩點(diǎn),若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】方程的曲線即為函數(shù)的圖像,對于函數(shù),有如下結(jié)論:①上單調(diào)遞減;②函數(shù)不存在零點(diǎn);③函數(shù)的值域是;④的圖像不經(jīng)過第一象限,其中正確結(jié)論的個(gè)數(shù)是___________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某程序框圖如圖所示,則該程序運(yùn)行后輸出的k值是(

A.5
B.6
C.7
D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知極坐標(biāo)系的極點(diǎn)在直角坐標(biāo)系的原點(diǎn)處,極軸與x軸的正半軸重合,直線l的極坐標(biāo)方程為: ,曲線C的參數(shù)方程為: (α為參數(shù)).
(1)寫出直線l的直角坐標(biāo)方程;
(2)求曲線C上的點(diǎn)到直線l的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ﹣lnx.
(1)若f(x)在x=3處取得極值,求實(shí)數(shù)a的值;
(2)若f(x)≥5﹣3x恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案