擲甲、乙兩顆骰子,甲出現(xiàn)的點數(shù)為,乙出現(xiàn)的點數(shù)為,若令的概率,的概率,試求的值.

.

解析試題分析:由題意可知事件,因此考慮通過求其對立事件發(fā)生的概率來求,窮舉易得事件包含了個基本事件,因此,而事件,變形即,同樣通過窮舉可知事件包含了個基本事件,因此,
從而.
試題解析:以有序?qū)崝?shù)對來表示兩次拋擲骰子的結(jié)果,則總共有個基本事件,根據(jù)題意,事件,則事件,總共有,……,,,……,個基本事件,根據(jù)古典概型可知,同理事件,即,若,,;若,,;若,;若,,,,;若,,,,;若,,,,,
,∴.
考點:古典概型求概率.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

x的取值范圍為[0,10],給出如圖所示程序框圖,輸入一個數(shù)x.求:
(Ⅰ)輸出的x(x<6)的概率;
(Ⅱ)輸出的x(6<x≤8)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

一個袋中有4個大小相同的小球,其中紅球1個,白球2個,黑球1個,現(xiàn)從袋中有放回地取球,每次隨機取一個,求:(Ⅰ)連續(xù)取兩次都是白球的概率;(Ⅱ)若取一個紅球記2分,取一個白球記1分,取一個黑球記0 分,連續(xù)取三次分數(shù)之和為4分的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某同學在生物研究性學習中想對春季晝夜溫差大小與黃豆種子發(fā)芽多少之間的關(guān)系進行研究,于是他在4月份的30天中隨機挑選了5天進行研究,且分別記錄了每天晝夜溫差與每天每100顆種子浸泡后的發(fā)芽數(shù),得到如下資料:

日期
4月1日
4月7日
4月15日
4月21日
4月30日
溫差
10
11
13
12
8
發(fā)芽數(shù)
23
25
30
26
16
 
(1)從這5天中任選2天,記發(fā)芽的種子數(shù)分別為,求事件“均不小于25的概率。
(2)從這5天中任選2天,若選取的是4月1日與4月30日的兩組數(shù)據(jù),請根據(jù)這5天中的另三天的數(shù)據(jù),求出關(guān)于的線性回歸方程;
(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?(參考公式:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某校從高一年級周末考試的學生中抽出6O名學生,其成績(均為整數(shù))的頻率分布直方圖如圖所示:(1)依據(jù)頻率分布直方圖,估計這次考試的及格率(60分及以上為及格)和平均分;(2)已知在[90,100]段的學生的成績都不相同,且都在94分以上,現(xiàn)用簡單隨機抽樣方法,從95,96,97,98,99,100這6個數(shù)中任取2個數(shù),求這2個數(shù)恰好是兩個學生的成績的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

實驗北校舉行運動會,組委會招墓了16名男志愿者和14名女志愿者,調(diào)查發(fā)現(xiàn),男、女志愿者中分別有10 人和6人喜愛運動,其余不喜愛.
(1)根據(jù)以上數(shù)據(jù)完成以下列聯(lián)表:

(2)根據(jù)列聯(lián)表的獨立性檢驗,有多大的把握認為性別與喜愛運動有關(guān)?
(3)從不喜愛運動的女志愿者中和喜愛運動的女志愿者中各選1人,求其中不喜愛運動的女生甲及喜愛運動的女生乙至少有一人被選取的概率.
參考公式 :(其中

 




是否有關(guān)聯(lián)
沒有關(guān)聯(lián)
90%
95%
99%
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

袋中裝有編號為的球個,編號為的球個,這些球的大小完全一樣。
(1)從中任意取出四個,求剩下的四個球都是號球的概率;
(2)從中任意取出三個,記為這三個球的編號之和,求隨機變量的分布列及其數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

將一個半徑適當?shù)男∏蚍湃肴鐖D所示的容器最上方的入口處,小球?qū)⒆杂上侣洌∏蛟谙侣溥^程中,將3次遇到黑色障礙物,最后落入A袋或B袋中。已知小球每次遇到黑色障礙物時向左、右兩邊下落的概率都是.

(1)求小球落入A袋中的概率P(A);
(2)在容器入口處依次放入4個小球,記X為落入A袋中小球的個數(shù),試求X=3的概率和X的數(shù)學期望EX.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

如圖,在正方形內(nèi)有一扇形(見陰影部分),扇形對應(yīng)的圓心是正方形的一頂點,半徑為正方形的邊長。在這個圖形上隨機撒一粒黃豆,它落在扇形外正方形內(nèi)的概率為            。(用分數(shù)表示)

查看答案和解析>>

同步練習冊答案