【題目】甲乙丙丁四個(gè)物體同時(shí)從某一點(diǎn)出發(fā)向同一個(gè)方向運(yùn)動(dòng),其路程fi(x)(i=1,2,3,4)關(guān)于時(shí)間x(x≥0)的函數(shù)關(guān)系式分別為 , 有以下結(jié)論:
①當(dāng)x>1時(shí),甲在最前面;
②當(dāng)x>1時(shí),乙在最前面;
③當(dāng)0<x<1時(shí),丁在最前面,當(dāng)x>1時(shí),丁在最后面;
④丙不可能在最前面,也不可能最最后面;
⑤如果它們已知運(yùn)動(dòng)下去,最終在最前面的是甲.
其中,正確結(jié)論的序號(hào)為(把正確結(jié)論的序號(hào)都填上,多填或少填均不得分)
【答案】③④⑤
【解析】解:路程fi(x)(i=1,2,3,4)關(guān)于時(shí)間x(x≥0)的函數(shù)關(guān)系式分別為: ,
它們相應(yīng)的函數(shù)模型分別是指數(shù)型函數(shù),冪函數(shù),一次函數(shù),和對(duì)數(shù)型函數(shù)模型;
①當(dāng)x=2時(shí),f1(2)=3,f2(2)=8,∴該結(jié)論不正確;
②∵指數(shù)型的增長(zhǎng)速度大于冪函數(shù)的增長(zhǎng)速度,∴x>1時(shí),甲總會(huì)超過乙的,∴該結(jié)論不正確;
③根據(jù)四種函數(shù)的變化特點(diǎn),對(duì)數(shù)型函數(shù)的變化是先快后慢,當(dāng)x=1時(shí)甲、乙、丙、丁四個(gè)物體重合,從而可知當(dāng)0<x<1時(shí),丁走在最前面,當(dāng)x>1時(shí),丁走在最后面,∴該結(jié)論正確;
④結(jié)合對(duì)數(shù)型和指數(shù)型函數(shù)的圖象變化情況,可知丙不可能走在最前面,也不可能走在最后面,∴該結(jié)論正確;
⑤指數(shù)函數(shù)變化是先慢后快,當(dāng)運(yùn)動(dòng)的時(shí)間足夠長(zhǎng),最前面運(yùn)動(dòng)的物體一定是按照指數(shù)型函數(shù)運(yùn)動(dòng)的物體,即一定是甲物體,∴該結(jié)論正確.
∴正確結(jié)論的序號(hào)為:③④⑤.
故答案為:③④⑤.
分別取特值驗(yàn)證命題①②;對(duì)數(shù)型函數(shù)的變化是先快后慢,當(dāng)x=1時(shí)甲、乙、丙、丁四個(gè)物體又重合,從而判斷命題③正確;結(jié)合對(duì)數(shù)型和指數(shù)型函數(shù)的圖象變化情況,可知命題④正確;指數(shù)函數(shù)變化是先慢后快,當(dāng)運(yùn)動(dòng)的時(shí)間足夠長(zhǎng),最前面運(yùn)動(dòng)的物體一定是按照指數(shù)型函數(shù)運(yùn)動(dòng)的物體,即一定是甲物體.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一張足夠大的紙板上截取一個(gè)面積為3600平方厘米的矩形紙板ABCD,然后在矩形紙板的四個(gè)角上切去邊長(zhǎng)相等的小正方形,再把它的邊沿虛線折起,做成一個(gè)無蓋的長(zhǎng)方體紙盒(如圖).設(shè)小正方形邊長(zhǎng)為x厘米,矩形紙板的兩邊AB,BC的長(zhǎng)分別為a厘米和b厘米,其中a≥b.
(1)當(dāng)a=90時(shí),求紙盒側(cè)面積的最大值;
(2)試確定a,b,x的值,使得紙盒的體積最大,并求出最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過點(diǎn)的動(dòng)直線與拋物線:相交于兩點(diǎn).當(dāng)直線的斜率是時(shí),.
(1)求拋物線的方程;
(2)設(shè)線段的中垂線在軸上的截距為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓上的點(diǎn)到兩個(gè)焦點(diǎn)的距離之和為,短軸長(zhǎng)為,直線與橢圓交于、兩點(diǎn).
(1)求橢圓的方程;
(2)若直線與圓相切,探究是否為定值,如果是定值,請(qǐng)求出該定值;如果不是定值,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) , .
(Ⅰ)當(dāng) 時(shí), 恒成立,求的取值范圍;
(Ⅱ)當(dāng) 時(shí),研究函數(shù)的零點(diǎn)個(gè)數(shù);
(Ⅲ)求證: (參考數(shù)據(jù): ).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面內(nèi)一動(dòng)點(diǎn)與兩定點(diǎn)和連線的斜率之積等于.
(Ⅰ)求動(dòng)點(diǎn)的軌跡的方程;
(Ⅱ)設(shè)直線: ()與軌跡交于、兩點(diǎn),線段的垂直平分線交軸于點(diǎn),當(dāng)變化時(shí),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過原點(diǎn)的動(dòng)直線與圓相交于不同的兩點(diǎn).
(1)求線段的中點(diǎn)的軌跡的方程;
(2)是否存在實(shí)數(shù),使得直線與曲線只有一個(gè)交點(diǎn)?若存在,求出的取值范圍;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=sin(ωx+φ)( )的最小正周期是π,若其圖象向右平移 個(gè)單位后得到的函數(shù)為奇函數(shù),則函數(shù)f(x)的圖象( )
A.關(guān)于點(diǎn) 對(duì)稱
B.關(guān)于點(diǎn) 對(duì)稱
C.關(guān)于直線 對(duì)稱
D.關(guān)于直線 對(duì)稱
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓和圓.
(1)判斷圓和圓的位置關(guān)系;
(2)過圓的圓心作圓的切線,求切線的方程;
(3)過圓的圓心作動(dòng)直線交圓于A,B兩點(diǎn).試問:在以AB為直徑的所有圓中,是否存在這樣的圓,使得圓經(jīng)過點(diǎn)?若存在,求出圓的方程;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com