如圖,在底面是正方形的四棱錐P—ABCD中,平面PCD⊥平面ABCD,PC=PD=CD=2.
(I)求證:PD⊥BC;
(II)求二面角B—PD—C的正切值。
見(jiàn)解析
解決立體幾何問(wèn)題的,主要有兩個(gè)策略,一是不建立坐標(biāo)系,直接利用空間向量基本定理,即將有關(guān)向量用空間一組基底表示出來(lái),然后通過(guò)向量的有關(guān)運(yùn)算求解;二是建立空間坐標(biāo)系,通過(guò)向量的坐標(biāo)運(yùn)算解決問(wèn)題
方法一:
(I)證明:∵平面PCD⊥平面ABCD,又∵平面PCD∩平面ABCD=CD,BC在平面ABCD內(nèi) ,BC⊥CD,∴BC⊥平面PCD.∴PD⊥BC.    …………6分
(II)解:取PD的中點(diǎn)E,連接CE、BE,

為正三角形,
由(I)知BC⊥平面PCD,∴CE是BE在平面PCD內(nèi)的射影,∴BE⊥PD.
∴∠CEB為二面角B—PD—C的平面角.       …………9分
         …………12分
方法二:(I)證明:取CD的中點(diǎn)為O,連接PO,

∵PD=PC,∴PO⊥CD,∵平面PCD⊥平面ABCD,
平面PCD∩平面ABCD=CD,∴PO⊥平面ABCD,如圖,在平面ABCD內(nèi),過(guò)O作OM⊥CD交AB于M,以O(shè)為原點(diǎn),OM、OC、OP分別為x、y、z軸,建立空間直角坐標(biāo)系O—xyz,
由B(2,1,0),C(0,1,0),D(0,-1,0),     …………4分
…6分
(II)解:取PD的中點(diǎn)E,連接CE、BE,則為正三角形,為二面角B—PD—C的平面角.               
 
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

圖1是設(shè)某幾何體的三視圖,則該幾何體的體積為(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如右圖是一個(gè)空間幾何體的三視圖,這個(gè)幾何體的體積是   (    )
A.     B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

右圖是某幾何體的三視圖,則該幾何體的體積是          

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

一個(gè)幾何體的三視圖如圖所示,則這個(gè)幾何體的體積是(       )
A.2B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

圓錐的底面半徑是3,高是4,則它的側(cè)面積是(    )
A.  B.C.  D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列三視圖(依次為正視圖、側(cè)視圖、俯視圖)表示的幾何體是(    )
A.六棱柱B.六棱錐C.六棱臺(tái)D.六邊形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

某幾何體的正視圖如圖所示,則該幾何體的俯視圖不可能的是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

一個(gè)四棱錐的底面為長(zhǎng)方形,其三視圖如圖所示,則這個(gè)四棱錐的體積是_________

第15題圖

查看答案和解析>>

同步練習(xí)冊(cè)答案