1 |
2 |
bn |
1+bn•f(n-1) |
4 | bn |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
bn |
1+bn•f(n-1) |
1 |
bn+1 |
1 |
bn |
1 |
bn |
4 | bn |
1 | ||
|
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
bn |
1+bn•f(n-1) |
1 |
bn+1 |
1 |
bn |
1 |
bn |
1 |
bn+1 |
1 |
bn |
1 |
bn |
1 |
b1 |
1 |
b2 |
1 |
b1 |
1 |
b3 |
1 |
b2 |
1 |
bn |
1 |
bn-1 |
1 |
n2 |
4 | bn |
1 | ||
|
1 | ||
|
2 | ||||
|
2 | ||||
|
n |
n-1 |
2 |
3 |
2 |
2010 |
2009 |
2010 |
科目:高中數(shù)學(xué) 來源: 題型:
a | a1 1 |
a | a2 2 |
a | a2 1 |
a | a1 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:浙江省溫州中學(xué)2011-2012學(xué)年高二下學(xué)期期末考試數(shù)學(xué)理科試題 題型:013
已知y=f(x)是定義在R上的函數(shù),a∈R,那么“對任意的x∈R,|f(x)|≥a恒成立”的充要條件是
A.對任意的x∈R,f(x)≥a或f(x)≤-a恒成立
B.對任意的x∈R,f(x)≥a恒成立或?qū)θ我獾膞∈R,f(x)≤-a恒成立
C.對任意的x∈R,f(x)≥|a|或f(x)≤-|a|恒成立
D.對任意的x∈R,f(x)≥a恒成立且對任意的x∈R,f(x)≥-a恒成立
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:中山一模 題型:解答題
1 |
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆黑龍江虎林高中高二下學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)f(x)=alnx-x2+1.
(1)若曲線y=f(x)在x=1處的切線方程為4x-y+b=0,求實數(shù)a和b的值;
(2)若a<0,且對任意x1、x2∈(0,+∞),都|f(x1)-f(x2)|≥|x1-x2|,求a的取值范圍.
【解析】第一問中利用f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,
由已知得a-2=4,2-a=b,所以a=6,b=-4.
第二問中,利用當(dāng)a<0時,f′(x)<0,∴f(x)在(0,+∞)上是減函數(shù),
不妨設(shè)0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,
∴|f(x1)-f(x2)|≥|x1-x2|等價于f(x1)-f(x2)≥x2-x1,
即f(x1)+x1≥f(x2)+x2,結(jié)合構(gòu)造函數(shù)和導(dǎo)數(shù)的知識來解得。
(1)f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,
由已知得a-2=4,2-a=b,所以a=6,b=-4.
(2)當(dāng)a<0時,f′(x)<0,∴f(x)在(0,+∞)上是減函數(shù),
不妨設(shè)0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,
∴|f(x1)-f(x2)|≥|x1-x2|等價于f(x1)-f(x2)≥x2-x1,即f(x1)+x1≥f(x2)+x2,
令g(x)=f(x)+x=alnx-x2+x+1,g(x)在(0,+∞)上是減函數(shù),
∵g′(x)=-2x+1=(x>0),
∴-2x2+x+a≤0在x>0時恒成立,
∴1+8a≤0,a≤-,又a<0,
∴a的取值范圍是
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com