設(shè)A={1,2,…,10},若“方程x2-bx-c=0滿足b,c∈A,且方程至少有一根a∈A”,就稱該方程為“漂亮方程”.則“漂亮方程”的總個(gè)數(shù)為________.

12
分析:根據(jù)題意,用十字相乘法,先把c分解因數(shù),依據(jù)方程根與系數(shù)的關(guān)系,這兩個(gè)因數(shù)的差就是b,進(jìn)而可以確定方程,再依次分析c等于2、3、…10,分別分析、列舉其“漂亮方程”的個(gè)數(shù),由加法原理,計(jì)算可得答案.
解答:用十字相乘法,先把c分解因數(shù),依據(jù)方程根與系數(shù)的關(guān)系,這兩個(gè)因數(shù)的差就是b;
c=2 時(shí),有2×1=2,b=2-1=1,則漂亮方程為x2-x-2=0;
c=3時(shí),有3×1=3,b=3-1=2,則漂亮方程為x2-2x-3=0;
c=4時(shí),有4×1=4,b=4-1=3,則漂亮方程為x2-3x-4=0,4=2×2,不符合集合元素的互異性,故排除;
c=5時(shí),有5×1=5,b=5-1=4,則漂亮方程為x2-4x-5=0;
c=6時(shí),有6×1=6,b=6-1=5,則漂亮方程為x2-5x-6=0,
同時(shí),有2×3=6,b=3-2=1,則漂亮方程為x2-x-6=0;
c=7時(shí),有7×1=7,b=7-1=6,則漂亮方程為x2-6x-7=0,
c=8時(shí),有8×1=8,b=8-1=7,則漂亮方程為x2-7x-8=0,
同時(shí),有2×4=8,b=4-2=2,則漂亮方程為x2-2x-8=0;
c=9時(shí),有9×1=9,b=9-1=8,則漂亮方程為x2-8x-9=0,9=3×3,不符合集合元素的互異性,故排除;
c=10時(shí),有10×1=10,b=10-1=9,則漂亮方程為x2-10x-9=0,
同時(shí),有2×5=10,b=5-2=3,則漂亮方程為x2-3x-10=0;
綜合可得,共12個(gè)漂亮方程,
故答案為12.
點(diǎn)評:本題主要考查方程的根的存在性及個(gè)數(shù)判斷,分類計(jì)數(shù)原理的應(yīng)用,注意分析題意,得到“漂亮方程”的定義,體現(xiàn)了分類討論的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
a
=(1,-2),
b
=(-3,4),
c
=(3,2),則(
a
+2
b
)•
c
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a=1.3-2,b=log2
1
3
,c=log67,則(  )
A、b<a<c
B、a<c<b
C、a<b<c
D、b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
a
=(1,-2)
,
b
=(-3,4)
c
=(3,2)
,則(
a
+2
b
)  •
c
=
-3
-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•上海模擬)定義集合運(yùn)算:A*B={z|z=xy,x∈A,y∈B}.設(shè)A={1,2},B={4,6},則集合A*B的所有元素之和為
30
30

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a=1.70.2,b=log2.10.9,c=0.82.1,則( 。
A、a>c>bB、b>c>aC、c>b>aD、c>a>b

查看答案和解析>>

同步練習(xí)冊答案