存在的取值范圍是        。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(請?jiān)谙铝腥}中任選一題作答,如果多做,則按所做的第一題評分)
A.(不等式選做題)若不等式a≥|x+1|+|x-2|存在實(shí)數(shù)解,則實(shí)數(shù)a的取值范圍是
 

B.(幾何證明選做題)如圖,∠B=∠D,AE⊥BC,∠ACD=90°,且AB=6,AC=4,AD=12,則AE=
 

精英家教網(wǎng)

C.(坐標(biāo)系與參數(shù)方程選做題)直角坐標(biāo)系xoy中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建極坐標(biāo)系,設(shè)點(diǎn)A,B分別在曲線C1
x=3+cos θ
y=4+sin θ
 (θ為參數(shù))和曲線C2:p=1上,則|AB|的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在R上的奇函數(shù),且當(dāng)x≥0時,f(x)=
x
,若存在x∈[t2-1,t],使不等式f(2x+t)≥2f(x)成立,則實(shí)數(shù)t的取值范圍是.
1-
5
2
,
1+
17
4
1-
5
2
,
1+
17
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•泰安一模)已知命題p:“?x∈[1,2],x2-a≥0”,命題q:“存在x∈R,使x2+2ax+2-a=0”若命題“q且p”是真命題,則實(shí)數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•許昌縣一模)設(shè)函數(shù)y=f(x)的定義域?yàn)镈,若函數(shù)y=f(x)滿足下列兩個條件,則稱y=f(x)在定義域D上是閉函數(shù).①y=f(x)在D上是單調(diào)函數(shù);②存在區(qū)間[a,b]⊆D,使f(x)在[a,b]上值域?yàn)閇a,b].如果函數(shù)f(x)=
2x+1
+k
為閉函數(shù),則k的取值范圍是( 。

查看答案和解析>>

同步練習(xí)冊答案