精英家教網如圖,P1(x1,y1),P2(x2,y2),…,Pn(xn,yn)(0<y1<y2<…<yn)是曲線C:y2=3x(y≥0)上的n個點,點Ai(ai,0)(i=1,2,3,…,n)在x軸的正半軸上,且△Ai-1AiPi是正三角形(A0是坐標原點).則a1=
 
;猜想an關于n的表達式為
 
分析:由題意可知直線A0P1為y=
3
x,然后與y2=3x聯(lián)立可得到P1的坐標,再由△A0A1P1是正三角形可得到A1的坐標得到a1的值,先根據(jù)題意可得到關系,然后根據(jù)yn2=3xn得(an-an-12=2(an-1+an),從而可猜想數(shù)列通項公式an=n(n+1).
解答:解:y=
3
x  ①
y2=3x    ②
P1(1,
3
)

∴a1=2,
依題意,得 xn=
an-1+an
2
yn=
3
an-an-1
2
,
由此及yn2=3xn(
3
an-an-1
2
)2=
3
2
(an-1+an)

即(an-an-12=2(an-1+an).
由(1)可猜想:an=n(n+1)n∈N*
故答案為:2;an=n(n+1)(n∈N*
點評:本題考查數(shù)列與解析幾何的綜合題目,解題過程中,用到方程的求解,注意題目中的運算比較繁瑣,不要在這種環(huán)節(jié)出錯.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網如圖,P1(x1,y1)、P2(x2,y2)、…、Pn(xn,yn)(0<y1<y2<…<yn)是曲線C:y2=3x(y≥0)上的n個點,點Ai(ai,0)(i=1,2,3,…,n)在x軸的正半軸上,且△Ai-1AiPi是正三角形(A0是坐標原點).
(1)寫出a1,a2,a3;
(2)求出點An(an,0)(n∈N*)的橫坐標an關于n的表達式;并用數(shù)學歸納法證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網如圖,P1(x1,y1)、P2(x2,y2)、…、Pn(xn,yn)(0<y1<y2<…<yn)是曲線C:y2=3x(y≥0)上的n個點,點Ai(ai,0)(i=1,2,3,…,n)在x軸的正半軸上,且△Ai-1AiPi是正三角形(A0是坐標原點).
(1)寫出a1,a2,a3;
(2)求出點An(an,0)(n∈N*)的橫坐標an關于n的表達式;
(3)設bn=
1
an+1
+
1
an+2
+
1
an+3
+…+
1
a2n
,若對任意的正整數(shù)n,當m∈[-1,1]時,不等式t2-2mt+
1
6
bn
恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,P1(x1,y1)、P2(x2,y2)、…、Pn(xn,yn)(0<y1<y2<…<yn) 是曲線C:y2=3x(y≥0)上的n個點,點Ai(ai,0)(i=1,2,3,…n)在x軸的正半軸上,且△Ai-1AiPi是正三角形(A0是坐標原點).
(1)求a1、a2、a3的值;
(2)求出點An(an,0)(n∈N+)的橫坐標an和點An-1(an-1,0)(n>0,n∈N+)橫坐標an-1的關系式;
(3)根據(jù)(1)的結論猜想an關于n的表達式,并用數(shù)學歸納法證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•閘北區(qū)二模)如圖,P1(x1,y1),P2(x2,y2),…,Pn(xn,yn),…是曲線C:y2=
1
2
x(y≥0)
上的點,A1(a1,0),A2(a2,0),…,An(an,0),…是x軸正半軸上的點,且△A0A1P1,△A1A2P2,…,△An-1AnPn,…均為斜邊在x軸上的等腰直角三角形(A0為坐標原點).
(1)寫出an-1、an和xn之間的等量關系,以及an-1、an和yn之間的等量關系;
(2)猜測并證明數(shù)列{an}的通項公式;
(3)設bn=
1
an+1
+
1
an+2
+
1
an+3
+…+
1
a2n
,集合B={b1,b2,b3,…,bn,…},A={x|x2-2ax+a2-1<0,x∈R},若A∩B=∅,求實常數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案