(06年湖南卷文)(12分)

某安全生產(chǎn)監(jiān)督部門對5家小型煤礦進行安全檢查(簡稱安檢). 若安檢不合格,則必須整改. 若整改后經(jīng)復查仍不合格,則強制關閉. 設每家煤礦安檢是否合格是相互獨立的,且每家煤礦整改前安檢合格的概率是0.5,整改后安檢合格的概率是0.8,計算(結(jié)果精確到0.01):

(Ⅰ)恰好有兩家煤礦必須整改的概率;

(Ⅱ)某煤礦不被關閉的概率;

(Ⅲ)至少關閉一家煤礦的概率.

解析:(Ⅰ)每家煤礦必須整改的概率是1-0.5,且每家煤礦是否整改是相互獨立的. 所以恰好有兩家煤礦必須整改的概率是.

(Ⅱ)解法一 某煤礦被關閉,即該煤礦第一次安檢不合格,整改后經(jīng)復查仍不合格,所以該煤礦被關閉的概率是,從而煤礦不被關閉的概率是0.90.

解法二 某煤礦不被關閉包括兩種情況:(i)該煤礦第一次安檢合格;(ii)該煤礦第一次安檢不合格,但整改后合格.

所以該煤礦不被關閉的概率是.

(Ⅲ)由題設(Ⅱ)可知,每家煤礦不被關閉的概率是0.9,且每家煤礦是否被關閉是相互獨立的,所以到少關閉一家煤礦的概率是.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(06年湖南卷文)某高校有甲、乙兩個數(shù)學建模興趣班. 其中甲班有40人,乙班50人. 現(xiàn)分析兩個班的一次考試成績,算得甲班的平均成績是90分,乙班的平均成績是81分,則該校數(shù)學建模興趣班的平均成績是     分.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(06年湖南卷文)(14分)

在m(m≥2)個不同數(shù)的排列P1P2…Pn中,若1≤i<j≤m時Pi>Pj(即前面某數(shù)大于后面某數(shù)),則稱Pi與Pj構成一個逆序. 一個排列的全部逆序的總數(shù)稱為該排列的逆序數(shù). 記排列的逆序數(shù)為an,如排列21的逆序數(shù),排列321的逆序數(shù).

(Ⅰ)求a4、a5,并寫出an的表達式;

(Ⅱ)令,證明,n=1,2,….

查看答案和解析>>

同步練習冊答案